THERMOPHYSICAL PROPERTIES OF Al–Ni–Co–R (R = Sm, Tb) ALLOYS IN CRYSTALLINE AND LIQUID STATES
- Autores: Rusanov B.A.1, Sidorov V.E.1,2, Son L.D.1,3, Sabirzyanov A.A.4
- 
							Afiliações: 
							- Ural State Pedagogical University
- Ural Federal University
- Institute of Metallurgy UB RAS
- Ural State University of Railway Transport
 
- Edição: Nº 3 (2023)
- Páginas: 298-306
- Seção: Articles
- URL: https://rjeid.com/0235-0106/article/view/661302
- DOI: https://doi.org/10.31857/S023501062303009X
- EDN: https://elibrary.ru/PSHUSO
- ID: 661302
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Experimental investigations of density and electrical resistivity of Al86Ni6Co2R6 (R = Sm, Tb) alloys were carried out in a wide temperature range, including crystalline and liquid states. Density was measured by gamma-penetrating method, and electrical resistance – by contactless method in rotating magnetic field. The solidus and liquidus temperatures were determined, the coefficients of volume expansion and the relative changes in density and resistivity during melting were calculated. The molar volumes of the alloys were calculated. It was found that the alloys are characterized by a wide two-phase zone where density and resistivity dependences show nonlinear behavior. At liquidus temperature an abrupt increase in density and a decrease in electrical resistivity were found. It has been established that terbium increases density of the alloys and reduces their resistivity more than samarium. In liquid phase at temperatures below T = 1300–1350 K density hysteresis was detected, and its absence on resistivity curves was shown. This may indicate the processes of large-scale inhomogeneities decay that do not cause changes in the electronic subsystem of the alloys but play a significant role in amorphization. The revealed features of the properties will make it possible to optimize the process of melts preparing before rapid quenching in order to obtain high-quality amorphous and nanocrystalline samples.
Palavras-chave
Sobre autores
B. Rusanov
Ural State Pedagogical University
							Autor responsável pela correspondência
							Email: rusfive@mail.ru
				                					                																			                												                								Russia, Yekaterinburg						
V. Sidorov
Ural State Pedagogical University; Ural Federal University
														Email: rusfive@mail.ru
				                					                																			                												                								Russia, Yekaterinburg; Russia, Yekaterinburg						
L. Son
Ural State Pedagogical University; Institute of Metallurgy UB RAS
														Email: rusfive@mail.ru
				                					                																			                												                								Russia, Yekaterinburg; Russia, Yekaterinburg						
A. Sabirzyanov
Ural State University of Railway Transport
														Email: rusfive@mail.ru
				                					                																			                												                								Russia, Yekaterinburg						
Bibliografia
- Inoue A., Kimura H. // J. Light Met. 2001. 1. P. 31–41. https://doi.org/0.1016/S1471-5317(00)00004-3
- Inoue A., Ohtera K., Tsai A.P. // Jap. J. Appl. Phys. 1988. 27. № 9. L1579–L1582. https://doi.org/10.1143/JJAP.27.L736
- Wang L., Ma L., Kimura H., Inoue A. // Mat. Lett. 2002. 52. № 1–2. P. 47–52. https://doi.org/10.1016/S0167-577X(01)00364-0
- Rusanov B., Sidorov V., Svec P., Janickovic D., Moroz A., Son L., Ushakova O. // J. Alloys and Comp. 2019. 787. P. 448–451. https://doi.org/10.1016/j.jallcom.2019.02.058
- Svec P., Rusanov B., Moroz A., Petrova S., Janickovic D., Sidorov V., Svec P. Sr. // J. Alloys and Comp. 2021. 876. 160109. https://doi.org/10.1016/j.jallcom.2021.160109
- Abrosimova G., Chirkova V., Pershina E., Volkov N., Sholin I., Aronin A. // Metals. 2022. 12. P. 332–342. https://doi.org/10.3390/met12020332
- Uporov S.A., Uporova N.S., Sidorov V.E. et al. // High Temp. 2012. 50. P. 611–615. https://doi.org/10.1134/S0018151X12040207
- Lad’yanov V.I., Bel’tyukov A.L., Men’shikova S.G., Maslov V.V., Nosenko V.K., Mashira V.A. Viscosity of glass forming Al86Ni8(La/Ce)6, Al86Ni6Co2Gd4(Y/Tb)2 melts // Phys. and Chem. of Liq. 2008. 46. № 1. P. 71–77. https://doi.org/10.1080/00319100701488508
- Lad’yanov V.I., Bel’tyukov A.L., Men’shikova S.G., Volkov V.A. // Met. Sci. and Heat Treat. 2007. 49. № 5–6. P. 236–239. https://doi.org/10.1007/s11041-007-0042-5
- Rusanov B., Sidorov V., Svec P., Janickovic D. // Phys. B: Cond. Matt. 2021. 619. 413216. https://doi.org/10.1016/j.physb.2021.413216
- Rusanov B.A., Baglasova E.S., Popel P.S., Sidorov V.E., Sabirzyanov A.A. // High Temp. 2018. 56. P. 439–443. https://doi.org/10.1134/S0018151X18020190
- Brodova I.G., Popel P.S., Eskin G.I. Liquid Metal Processing: Application to Aluminum Alloys Production / Taylor and Francis, New York, 2002.
- Rusanov B.A., Sidorov V.E., Moroz A.I., Svec P., Sr., Janickovic D. // Tech. Phys. Lett. 2021. 47. № 8. P. 777–779. https://doi.org/10.1134/S1063785021080101
- Vasin M.G., Menshikova S.G., Ivshin M.D. // Physica A. 2016. 449. P. 64–73. http://dx.doi.org/10.1016/j.physa.2015.12.085
- Son L.D. // Bull. Russ. Acad. Sci. Phys. 2022. 86. P. 145–149. https://doi.org/10.3103/S1062873822020289
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 

