Stratification and combustion of hydrogen-air mixtures in vertical channel
- Authors: Yakovlev S.A.1, Stakhanov V.V.1, Bezgodov E.V.1, Tarakanov A.A.1, Popov I.A.1, Pasyukov S.D.1, Nikiforov M.V.1
- 
							Affiliations: 
							- Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
 
- Issue: Vol 44, No 9 (2025)
- Pages: 82-92
- Section: Combustion, explosion and shock waves
- URL: https://rjeid.com/0207-401X/article/view/690778
- DOI: https://doi.org/10.31857/S0207401X25090073
- ID: 690778
Cite item
Abstract
In the current work, experimental investigation of propagation and combustion of a inhomogeneous hydrogen-air mixture in a vertical channel were conducted. The average volume fraction of hydrogen varied from 10 to 30%. Data on the dynamics of hydrogen propagation along the channel height were obtained. In combustion experiments, data on the flame front propagation velocity and excess pressure were obtained. The effect of the mixture non-uniformity on combustion characteristics was estimated.
About the authors
S. A. Yakovlev
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
V. V. Stakhanov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
E. V. Bezgodov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
A. A. Tarakanov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
I. A. Popov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
S. D. Pasyukov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
														Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
M. V. Nikiforov
Russian Federal Nuclear Center – Zababakhin All-Russia Research Institute of Technical Physics
							Author for correspondence.
							Email: yakovlevsa@vniitf.ru
				                					                																			                												                								Snezhinsk, Russia						
References
- Qingchun H., Xihong Z., Hog H. // Int. J. Hydrogen Energy. 2022. V. 48. P. 13705. https://doi.org/10.1016/j.ijhydene.2022.11.302
- Gelfand B.E., Silnikov M.B., Medvedev S.P., Khomik S.V. Termogazodinamika goreniya i vzryva vodoroda. St Peterburg.: St. Petersburg Polytechnic University Press, 2009 [In Russian].
- Vollmer K., Ettner F., Sattelmayer T. // Combustion Sci. Techn. 2012. V. 184. № 10—11. P. 1903. https://doi.org/10.1080/00102202.2012.690652
- Vollmer K., Ettner F., Sattelmayer T. // Sci. Techn. Energetic Mater: J. Japan Explosive Soc. 2011. V. 72. P. 74.
- Ciccarelli G., Dorofeev S. // Progress Energy Comb. Sci. 2008. V. 34. P. 499. https://doi.org/10.1016/j.pecs.2007.11.002
- Scarpa R., Studer E., Kudriakov S. et al. // Int. J. Hydrogen Energy. 2019. V. 44. P. 9009. https://doi.org/10.1016/j.ijhydene.2018.06.160
- Rudy W., Kuznetsov M., Porowski R. et al. // Proc. Combustion Instit. 2013. V. 34. № 2. P. 1965. https://doi.org/10.1016/j.proci.2012.07.019
- Wang L., Ma H., Shen Z. et al. // Int. J. Hydrogen Energy. 2018. V. 43. № 9. P. 4645. https://doi.org/10.1016/ j.ijhydene.2018.01.080
- Dorofeev S., Kuznetsov M., Alekseev V. et al. // J. Loss Prev. Proc. Ind. 2001. V. 14. № 6. P. 583. https://doi.org/10.1016/S0950-4230(01)00050-X
- Veser A., Breitung W., Dorofeev // J. Phys. IV. 2002. V. 12. № 7. Р. 333. https://doi.org/10.1051.jp4:20020301
- Peraldi O., Knystautus R., Lee J. // Proc. 21th Combust. Symp. (Intern.) on Combust. Elsevier, 1988. V. 21. Issue 1. Р. 1629. https://doi.org/10.1016/S0082-0784(88)80396-5
- Boeck L. R. Dis. doktor – ingenieurs. München: Techn. Universität München Institut für Energietechnik, 2015.
- Bentaib A., Bleyer A., Meynet N. et al. // Ann. Nucl. Energy. 2014. V. 74. P. 143. https://doi.org/10.1016/j.anucene.2014.07.012
- Bentaib A., Bleyer A., Heinz W. et al. // ERMARS. 2007.
- Kuznetsov M., Alekseev V., Dorofeev S. et al. // Proc. Symp. (Intern.) on Combustion. Elsevier, 1998. V. 27. № 2. Р. 2241. https://doi.org/10.1016/S0082-0784(98)80073-8
- Kuznetsov M., Yanez J., Grune J. et al. // Nucl. Eng. Design. 2015. V. 286. P. 36. https://doi.org/10.1016/j.nucengdes.2015.01.016
- Friedrich A., Grune J., Sempert K. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 17. P. 9041. https://doi.org/10.1016/j.ijhydene.2018.06.098
- Yakovlev S. A., Bezgodov E. V., Stakhanov V. V. et al. // Atomic Energy. 2023. V. 134. № 5-6. P. 380. https://doi.org/10.1007/s10512-024-01069-9
- Dorofeev S.B., Sidorov V.P. Dvoinishnikov A.E. // Comb. and Flame. 1996. V. 104. P. 95. https://doi.org/10.1016/0010-2180(95)00113-1
- Kiverin A.D., Medvedkov I.S., Yakovenko I.S. // Russ. J. Phys. Chem. B. 2022. V. 16. №6. P.1075. https://doi.org/10.1134/s1990793122060057
- Medvedev S.P., Maximova O.G., Cherepanova T.T. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 6. P. 1112. https://doi.org/10.1134/s1990793122060082
- Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 974. https://doi.org/10.1134/s1990793123040309
- Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1294. https://doi.org/10.1134/s1990793123060246
- Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 4. P. 965. https://doi.org/10.1134/s1990793124700416
- Guide for the Verification and Validation of Computational Fluid Dynamics Simulations. American Institute of Aeronautics and Astronautics. 1998.
- Baraldi D., Melideo D., Kotchourko A. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 11. P. 7633. https://doi.org/10.1016/j.ijhydene.2016.05.212
- Belyaev P.E., Makeeva I.R., Mastyuk D.A. et al. // Abstr. Rep. XVII All-Russian Sympos. on Combust., 2024. P. 128 [In Russian]. ISBN: 978-5-91845-116-8
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					