Numerical simulation of laminar stoichiometric hydrogen–air flame structure
- Autores: Tereza A.M.1, Agafonov G.L.1, Anderzhanov E.K.1, Betev A.S.1, Khomik S.V.1, Cherepanova T.T.1, Cherepanov A.A.1, Medvedev S.P.1
- 
							Afiliações: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
 
- Edição: Volume 44, Nº 8 (2025)
- Páginas: 54-63
- Seção: Combustion, explosion and shock waves
- URL: https://rjeid.com/0207-401X/article/view/689002
- DOI: https://doi.org/10.31857/S0207401X25080068
- ID: 689002
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Numerical simulations of flame structure and laminar burning velocity are performed for a stoichiometric hydrogen–air mixture under standard initial conditions. A comparative analysis is presented of the results obtained using three detailed kinetic mechanisms (DKMs), which differ both in the set of elementary reaction steps and reacting species and in the values of rate constants. It is found that the decrease in H2 concentration has a weakly pronounced two-stage character. In the presence of an additional initiation channel H2+O2=OH+OH, a pronounced second maximum of the intermediate H2O2 concentration appears. In the absence of this channel, a two-stage increase in OH concentration is observed. Based on an analysis of the sensitivity of heat release to reaction rate constants, the complex behavior of the OH and H2O2 profiles is explained. Despite the differences revealed, all three DKMs predict similar values of burning velocity and heat release rate.
Texto integral
 
												
	                        Sobre autores
A. Tereza
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
G. Agafonov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
E. Anderzhanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Betev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
S. Khomik
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
T. Cherepanova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Cherepanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
S. Medvedev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: tereza@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- A.L. Sanchez, and F.A. Williams, Prog. Energy Combust. Sci. 41, 1 (2014). https://doi.org/10.1016/j.pecs.2013.10.002
- V.V. Gubernov. PhD. Theses. Moscow: Lebedev Phys. Inst., RAS, 2013.
- A.G. Shmakov. PhD. Theses. Novosibirsk: IKhKG SO RAS, 2022.
- S. Kudriakov, E. Studer, C. Bin, Int. J. Hydrogen Energy 36 (3), 2555 (2011). https://doi.org/10.1016/j.ijhydene.2010.03.138
- G. Gai, S. Kudriakov, B. Rogg et al., Int. J. Hydrogen Energy, 44 (31), 17015 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.225
- I.S. Yakovenko, M.F. Ivanov, A.D. Kiverin, K.S. Melnikova, Int. J. Hydrogen Energy 43, 1894 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.138
- I.S. Yakovenko, A.D. Kiverin, K.S. Melnikova, Fluids 6, 21 (2021). https://doi.org/10.3390/fluids6010021
- S. Yakovenko, I.S. Medvedkov, A.D. Kiverin, Russ. J. Phys. Chem. B 16, 294 (2022). https://doi.org/10.1134/S1990793122020142
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, et al., Russ. J. Phys. Chem. B 17 (4), 974 (2023). http://dx.doi.org/10.1134/S1990793123040309
- A.M. Tereza, G.L. Agafonov, E. K. Anderzhanov et al., Russ. J. Phys. Chem. B 17 (6), 1294 (2023). http://dx.doi.org/10.1134/S1990793123060246
- Moroshkina, E. Yakupov, V. Mislavskii et al., Acta Astronautica 215, 496 (2024). https://doi.org/10.1016/j.actaastro.2023.12.032
- D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969).
- Z. Hong, D.F. Davidson, R.K. Hanson, Combust. and Flame 158 (4), 633 (2011). https://doi.org/10.1016/j.combustflame.2010.10.002
- Keromnes, W.K. Metcalfe, K.A. Heufer, et al., Combust. and Flame 160, 995 (2013). https://doi.org/10.1016/j.combustflame.2013.01.001
- G.P. Smith, Y. Tao, H. Wang, Foundational Fuel Chemistry Model Version 1.0 (FFCM-1). 2016. http://web.stanford.edu/group/haiwanglab/FFCM-1/index.html
- H. Hashemi, J.M. Christensen, S. Gersen, P. Glarborg, Proc. Combust. Inst. 3, 553 (2015). https://doi.org/10.1016/j.proci.2014.05.101
- A.A. Konnov, Combust. and Flame 203, 14 (2019). https://doi.org/10.1016/j.combustflame.2019.01.032
- Y. Zhang, J. Fu, M. Xie, J. Liu, Int. J. Hydrogen Energy 46 (7), 5799 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.083
- P. Krivosheyev, Y. Kisel, A. Skilandz et al., Int. J. Hydrogen Energy 66, 81 (2024). https://doi.org/10.1016/j.ijhydene.2024.03.363
- V.F. Nikitin, E.V. Mikhalchenko, L.I. Stamov et al., Acta Astronaut. 213, 156 (2023). https://doi.org/10.1016/j.actaastro.2023.08.036
- N.N. Smirnov, V.V. Azatyan, V.F. Nikitin et al., Int. J. Hydrogen Energy 49 (B2), 1315 (2023). https://doi.org/10.1016/j.ijhydene.2023.11.085.
- N.N. Smirnov, V.F. Nikitin, E.V. Mikhalchenko et al., Int. J. Hydrogen Energy 49 (B2), 495 (2023). https://doi.org/10.1016/j.ijhydene.2023.08.184
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al., Russ. J. Phys. Chem. B 17 (6), 1294 (2023)..
- CHEMKIN-Pro 15112. Reaction Design, San Diego, CK-TUT-10112-1112-UG-1., 20
- Alekseev V. PhD. Theses. Lund, Sweden: Lunds Univ., 2015.
- A.E. Lutz, R.J. Kee, J.A. Miller, Sandia National Laboratories, Livermore, CA SAND 87-8248 (1998).
- A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov et al., Russ. J. Phys. Chem. B, 18 (4), 965 (2024). https://doi.org/10.1134/S1990793124700416
- R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, Sandia National Laboratories, Livermore, CA, SAND85-8240 (1985).
- O.C. Kwon, G.M Faeth, Combust. and Flame 124, 590 (2001). https://doi.org/10.1016/S0010-2180(00)00229-7
- V.A. Bunev, V.N. Panfilov, and V.S. Babkin, Combust. Explos. Shock Waves 43 (2), 125 (2007). https://doi.org/10.1007/s10573-007-0017-2
- O.P. Korobeinichev, V.M. Shvartsberg, S.B. Il’in et al., Combust. Explos. Shock Waves 35 (3), 239 (1999). https://doi.org/10.1007/BF02674444
- V.V. Azatyan, Kinet. Catal. 61 (3), 319 (2020). https://doi.org/10.1134/S0023158420030039
- S. Medvedev, G. Agafonov, S. Khomik, Acta Astronautica 126, 150 (2016). https://doi.org/10.1016/j.actaastro.2016.04.019
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




