Thermodynamic Evaluation of Syngas Production by High-Temperature Conversion of Waste Oil
- Authors: Tsvetkov M.V.1, Podlesny D.N.1, Tsvetkova Y.Y.1, Salganskaya M.V.1, Zaychenko A.Y.1, Kislov V.M.1, Salgansky E.A.1
- 
							Affiliations: 
							- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
 
- Issue: Vol 44, No 7 (2025)
- Pages: 93-99
- Section: Combustion, explosion and shock waves
- URL: https://rjeid.com/0207-401X/article/view/687632
- DOI: https://doi.org/10.31857/S0207401X25070095
- ID: 687632
Cite item
Abstract
Thermodynamic evaluation of syngas production by high-temperature conversion of waste oil was performed using the Gibbs free energy minimization method. Optimum conditions for maximum hydrogen production while minimizing coke formation were determined. Equilibrium calculations were performed at atmospheric pressure with varying fuel excess ratio and water vapor amount. The results show that the optimal conditions for air-steam conversion of waste oil are: fuel excess ratio equal to 3.5 and molar ratio of water vapor to oxygen equal to 0.2. Under these conditions, coke formation does not occur, and hydrogen and carbon monoxide concentrations equal 27.5% and 28.4%, respectively.
Keywords
Full Text
 
												
	                        About the authors
M. V. Tsvetkov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
							Author for correspondence.
							Email: tsvetkovmv@gmail.com
				                					                																			                												                	Russian Federation, 							Chernogolovka						
D. N. Podlesny
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: tsvetkovmv@gmail.com
				                					                																			                												                	Russian Federation, 							Chernogolovka						
Yu. Yu. Tsvetkova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: tsvetkovmv@gmail.com
				                					                																			                												                	Russian Federation, 							Chernogolovka						
M. V. Salganskaya
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: tsvetkovmv@gmail.com
				                					                																			                												                	Russian Federation, 							Chernogolovka						
A. Yu. Zaychenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: tsvetkovmv@gmail.com
				                					                																			                												                	Russian Federation, 							Chernogolovka						
V. M. Kislov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: tsvetkovmv@gmail.com
				                					                																			                												                	Russian Federation, 							Chernogolovka						
E. A. Salgansky
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: tsvetkovmv@gmail.com
				                					                																			                												                	Russian Federation, 							Chernogolovka						
References
- Holechek J.L., Geli H.M., Sawalhah M.N., Valdez R. // Sustainability. 2022. V. 14. № 8. P. 4792. https://doi.org/10.3390/su14084792
- Tereza A.M., Agafonov G.L., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1294. https://doi.org/10.1134/S1990793123060246
- Aseeva R.M., Kruglov E.Y., Kobelev A.A. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. P. 707. https://doi.org/10.1134/S1990793124700076
- Kalak T. // Energies. 2023. V. 16. № 4. P. 1783; https://doi.org/10.3390/en16041783
- Dorofeenko S., Podlesniy D., Polianczyk E. et al. // Energies. 2024. V. 17. № 23. P. 6093. https://doi.org/10.3390/en17236093
- Li H., Feng Z., Ahmed A.T. et al. // J. Clean. Prod. 2022. V. 334. P. 130230. https://doi.org/10.1016/j.jclepro.2021.130230
- Singhabhandhu A., Tezuka T. // Energy. 2010. V. 35. № 6. P. 2544. https://doi.org/10.1016/j.energy.2010.03.001
- Wang Y., Yang Q., Ke L. et al. // Fuel. 2021. V. 283. 119170. https://doi.org/10.1016/j.fuel.2020.119170
- Lam S.S., Liew R.K., Jusoh A. et al. // Renew. Sustain. Energy Rev. 2016. V. 53. P. 741. https://doi.org/10.1016/j.rser.2015.09.005
- Su G., Ong H.C., Mofijur M., Mahlia T.I., Ok Y.S. // J. Hazard. Mater. 2022. V. 424. P. 127396. https://doi.org/10.1016/j.jhazmat.2021.127396
- Mittelbach M. // Eur. J. Lipid Sci. Technol. 2015. V. 117. № 11. P. 1832. https://doi.org/10.1002/ejlt.201500125
- Widodo S., Ariono D., Khoiruddin K., Hakim A.N., Wenten I.G. // Environ. Prog. Sustain. Energy. 2018. V. 37. № 6. P. 1867. https://doi.org/10.1002/ep.13011
- Zhao N., Li B., Chen D. et al. // Waste Manage. 2020. V. 104. P. 20. https://doi.org/10.1016/j.wasman.2020.01.007
- Akhmetshin M.R., Nyashina G.S., Romanov D.S. // Chem. Petrol. Eng. 2021.V. 56. № 9. P. 846. https://doi.org/10.1007/s10556-021-00851-x
- Chen C.Y., Lee W.J., Mwangi J.K. et al. // Aerosol and Air Qual. Res. 2017. V. 17. № 3. P. 899. https://doi.org/10.4209/aaqr.2016.09.0394
- Kislov V.M., Tsvetkov M.V., Zaichenko A.Y. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 947. https://doi.org/10.1134/S1990793123040255
- Krishenik P.M., Kostin S.V., Rogachev S.A. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1123. https://doi.org/10.1134/S1990793123050044
- Kislov V.M., Tsvetkova Yu.Yu., Tsvetkov M.V. et al. // Combust., Explos. Shock Waves. 2023. V. 59. № 2. P. 83. https://doi.org/10.15372/FGV20230210
- Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sustain. Energy Rev. 2023. V. 177. 113213. https://doi.org/10.1016/j.rser.2023.113213
- Salgansky E.A., Tsvetkov M.V., Tsvetkova Y.Y. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 1085. https://doi.org/10.1134/S1990793122060100
- Polianczyk E., Tarasov G., Zaichenko A. // E3S Web Conf. 2024. V. 474. 01013. https://doi.org/10.1051/e3sconf/202447401013
- Tsvetkova Y.Y., Kislov V.M., Pilipenko E.N., Salganskaya M.V., Tsvetkov M.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 4. P. 980. https://doi.org/10.1134/S199079312470043X
- Arriagada A., Mena R., Ripoll N. et al. // Chem. Eng. J. 2024. V. 495. 153011. https://doi.org/10.1016/j.cej.2024.153011
- Kislov V.M., Tsvetkova Y.Y., Pilipenko E.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 2. P. 374. https://doi.org/10.1134/S1990793123020070
- Kislov V.M., Glazov S.V., Salgansky E.A., Kolesnikova Yu.Yu., Salganskaya M.V. // Combust. Explos. Shock Waves. 2016. V. 52. № 3. P. 320. https://doi.org/10.1134/S0010508216030102
- Salganskaya M.V., Glazov S.V., Salganskii E.A. et al. // Russ. J. Phys. Chem. B. 2008. V. 2. № 1. P. 71. https://doi.org/10.1134/S1990793108010119
- Rocha C., Soria M.A., Madeira L.M. // J. Energy Inst. 2019. V. 92. № 5. P. 1599. https://doi.org/10.1016/j.joei.2018.06.017
- Noureddine H., Nahla F., Zouhour K., Marie-Noëlle P. // Energy Convers. Manag. 2013. V. 70. P. 174. https://doi.org/10.1016/j.enconman.2013.03.009
- Xu J., Peng Z., Rong S. et al. // Fuel. 2021. V. 306. 121767. https://doi.org/10.1016/j.fuel.2021.121767
- Trusov B.G. // Proc. 14th Intern. Conf. on Chemical Thermodynamics. St. Petersburg: NIIKh SPbGU, 2002. P. 483.
- Chen Y., Tan H., Yan M. et al. // Sustain. Energy Technol. Assessments. 2024. V. 70. 103956. https://doi.org/10.1016/j.seta.2024.103956
- Udoetuk E.N., Olatunbosun B.E., Adepojua T.F., Mayen I.A., Babalola R. // S. Afr. J. Chem. Eng. 2018. V. 25. №. 1. P. 169. https://doi.org/10.1016/j.sajce.2018.05.002
- Li C., Sayaka I., Chisato F., Fujimoto K. // Appl. Catal. A: Gen. 2016. V. 509. P. 123. https://doi.org/10.1016/j.apcata.2015.10.028
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted


