Converging Cylindrical Detonation Wave: Numerical Modeling and Experiment
- Authors: Sultanov V.G.1, Dudin S.V.1, Sosikov V.A.1, Torunov S.I.1, Vasilenok E.V.2, Rapota D.Y.1, Razmyslov A.V.1
- 
							Affiliations: 
							- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- Moscow Institute of Physics and Technology
 
- Issue: Vol 44, No 7 (2025)
- Pages: 64-72
- Section: Combustion, explosion and shock waves
- URL: https://rjeid.com/0207-401X/article/view/687629
- DOI: https://doi.org/10.31857/S0207401X25070075
- ID: 687629
Cite item
Abstract
Numerical modeling of formation and propagation of detonation wave with concave curvature was conducted in present work. The modeling follows experiments where detonation of cylindrical explosive charge is initiated by multiple 3D-printed initiation modules. Specific experiments were used to adjust parameters of the equation of state of charge explosive and of lenses material employed. The modeling has revealed main features in performance of single initiation module and of an initiation module installed in an experimental setup. Possibility of formation of “smooth” converging detonation wave was confirmed empirically.
Keywords
Full Text
 
												
	                        About the authors
V. G. Sultanov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
							Author for correspondence.
							Email: sultan@ficp.ac.ru
				                					                																			                												                	Russian Federation, 							Chernogolovka						
S. V. Dudin
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: sultan@ficp.ac.ru
				                					                																			                												                	Russian Federation, 							Chernogolovka						
V. A. Sosikov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: sultan@ficp.ac.ru
				                					                																			                												                	Russian Federation, 							Chernogolovka						
S. I. Torunov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: sultan@ficp.ac.ru
				                					                																			                												                	Russian Federation, 							Chernogolovka						
E. V. Vasilenok
Moscow Institute of Physics and Technology
														Email: sultan@ficp.ac.ru
				                					                																			                												                	Russian Federation, 							Dolgoprudny						
D. Yu. Rapota
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: sultan@ficp.ac.ru
				                					                																			                												                	Russian Federation, 							Chernogolovka						
A. V. Razmyslov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: sultan@ficp.ac.ru
				                					                																			                												                	Russian Federation, 							Chernogolovka						
References
- Medvedev S.P., Khomik S.V., Maximova O.G. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 962 https://doi.org/10.1134/S1990793123040279
- Medvedev S.P., Ivantsov A.N., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B V. 16. № 6. P. 1137. https://doi.org/10.1134/S1990793122060197
- Zeldovich Ya.B. // JETP. 1942. V. 12. № 9. P. 389
- Dudin S.V., Sosikov V.A., Torunov S.I. // J. Phys.: Conf. Ser. 2017. V. 946. 012057. https://doi.org/10.1088/1742-6596/946/1/012057
- Shutov A.V., Sultanov V.G., Dudin S.V. // J. Phys.: Conf. Ser. 2016. V. 774. 012075. https://doi.org/10.1088/1742-6596/774/1/012075
- Sosikov V.A., Torunov S.I., Dudin S.V. // J. Phys.: Conf. Ser. 2018. V. 1147. 012027. https://doi.org/10.1088/1742-6596/1147/1/012027
- Dudin S.V., Sosikov V.A., Torunov S.I. // J. Phys.: Conf. Ser. 2016. V. 774. 012074. https://doi.org/10.1088/1742-6596/774/1/012074
- Gubachev V.A., Bondarenko N.M., Fillipov V.A., Galkin E.A. Device to generate blast wave. Patent RU2451895C1. Russia // 2012.
- Krutik M.I., Arinin V.A., Ткаченко B.I., Dudin S.V. // Combustion and explosion. 2024. V. 17. № 2. P. 78. https://doi.org/10.30826/CE24170212
- Heylmun J., Vonk P., Brewer T. blastFoam: An OpenFOAM Solver for Compressible Multi-Fluid Flow with Application to High-Explosive Detonation. Synthetik Applied Technologies LLC. 2019.
- Heylmun J., Vonk P., Brewer T. blastFoam User Guide. Synthetik Applied Technologies LLC. 2019.
- Utkin A.V., Mochalova V.M., Torunov S.I. // Russ. J. Phys. Chem. B. 2011. V. 5. № 3. P. 513.
- Ermolaev B.S., Komissarov P.V., Basakina S.S., Lavrov V.V. // Russ. J. Phys. Chem. B 2023. V. 17. № 5. P. 1143. https://doi.org/10.1134/S1990793123050020
- Ermolaev B.S., Komissarov P.V., Basakina S.S., Lavrov V.V. // Russ. J. Phys. Chem. B 2024. V. 18. № 2. P. 494. https://doi.org/10.1134/S1990793124020076
- Dobratz B.M. LLNL Explosive Handbook: Properties of Chemical Explosives and Explosive Simulants. L.: LLNL. 1981.
- Sultanov V.G., Dudin S.V., Sosikov V.A. et al. // Combust. Explos. Shock Waves. 2023. V. 59. № 4. P. 516. https://doi.org/10.1134/S0010508223040159
- Dudin S.V., Sosikov V.A., Torunov S.I. // Combust. Explos. Shock Waves. 2019. V. 55. № 4. P. 507. https://doi.org/10.1134/S0010508219040191
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted






