Photogeneration of charge carriers in organic solar cells. The role of nonequilibrium states for electrons and holes
- Authors: Lukin L.V.1
- 
							Affiliations: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
 
- Issue: Vol 43, No 12 (2024)
- Pages: 66-83
- Section: Электрические и магнитные свойства материалов
- URL: https://rjeid.com/0207-401X/article/view/684179
- DOI: https://doi.org/10.31857/S0207401X24120071
- ID: 684179
Cite item
Abstract
The aim of this study is to consider a photogeneration of charge carriers in nano-structured blends of the donor (D) and acceptor (A) materials. Upon optical excitation photons absorbed in one of these materials produce intramolecular excitons which can diffuse to the D–A interface and form at the interface the interfacial CT states. The interfacial CT state dissociates into a geminate pair of the non-equilibrium mobile electron and hole. In the present study, an empirical model describing thermalization of the non-equilibrium charges within the Coulomb well is proposed. Efficiency of the interfacial CT state dissociation into a pair of free charges is found as a function of the electric field applied, effective temperature and diffusion length of non-equilibrium electron-hole pairs.
Full Text
 
												
	                        About the authors
L. V. Lukin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
							Author for correspondence.
							Email: leonid.v.lukin@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- J.-L. Brédas, J.E. Norton, J. Cornil, V. Coropceany. Acc. Chem. Res. 42, 1691 (2009). https://doi.org/10.1021/ar900099h
- T.M. Clarke, J.R. Durrant. Chem. Rev. 110, 6736 (2010). https://doi.org/10.1021/cr900271s
- A.Yu. Sosorev, D.Yu. Godovsky, D.Yu. Paraschuk. Phys. Chem. Chem. Phys. 20, 3658 (2018). https://doi.org/10.1039/c7cp06158g
- L.V. Lukin. Russian J. Phys. Chem. B: Focus on Physics, 17, 1300 (2023). https://doi.org/10.1134/S1990793123060180
- K. Vandewal. Annu. Rev. Phys. Chem. 67, 113 (2016). https://doi.org/10.1146/annurev-physchem-040215- 112144
- A.E. Jailaubekov, A.P. Willard, J.R. Tritsch, W.-L. Chan et al. Nature Mater. 12, 66 (2013). https://doi.org/10.1038/NMAT3500
- K. Chen, A.J. Barker, M.E. Reish, K.C. Gordon, J.M. Hodgkiss. J. Am. Chem. Soc. 135, 18502 (2013). https://doi.org/10.1021/ja408235h
- G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H.-J. Egelhaaf et al. Nature Mater. 12, 29 (2013). https://doi.org/10.1038/NMAT3502
- A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, R.H. Friend. Science, 335, 1340 (2012).
- H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, L. Mcculloch, J. Nelson, D.D.C. Bradley, J.R. Durrant, J. Am. Chem. Soc. 130, 3030 (2008).
- S. Gélinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J. Clark, T.S.van der Poll, G.C. Bazan, R.H. Friend. Science, 343, 512 (2014).
- A.C. Jakowetz, M.L. Böhm, J. Zhang, A. Sadhanala, S. Huettner, A.A. Bakulin, A. Rao, R.H. Friend. J. Am. Chem. Soc. 138, 11672 (2016). https://doi.org/10.1021/jacs.6b05131
- K. Vandewal, S. Albrecht, E.T. Hoke, K.R. Graham, J. Widmer et al. Nature Mater. 13, 63 (2014).
- J.D. Servaites, B.M. Savoie, J.B. Brink, T.J. Marks, M.A. Ratner. Energy Environ. Sci. 5, 8343 (2012).
- M. Hilczer, M. Tachiya. J. Phys. Chem. C, 114, 6808 (2010).
- V.A. Trukhanov, V.V. Bruevich, D.Y. Paraschuk. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 205318 (2011).
- M. Wiemer, A.V. Nenashev, F. Jansson, S.D. Baranovskii. Appl. Phys. Lett. 99, 013302 (2011). https://doi.org/10.1063/1.3607481
- S.D. Baranovskii, M. Wiemer, A.V. Nenashev, F. Jansson, F. Gebhard. J. Phys. Chem. Lett. 3, 1214 (2012). https://doi.org/10.1021/jz300123k
- S. Tscheuschner, H. Bässler, K. Huber, A. Köhler. J. Phys. Chem. B, 119, 10359 (2015). https://doi.org/10.1021/acs.jpcb.5b05138
- L.V. Lukin. Chem. Phys. 551, 111327 (2021). https://doi.org/10.1016/j.chemphys.2021.111327
- A. Devižis, A. Serbenta, K. Meerholz, D. Hertel, V. Gulbinas. Phys. Rev. Lett. 103, 027404 (2009). https://doi.org/10.1103/PhysRevLett.103.027404
- D.A. Vithanage, A. Devižis, V. Abramavičius, Y. Infahsaeng, D. Abramavičius, R.C.I. MacKenzie, P.E. Keivanidis, A. Yartsev, D. Hertel, J. Nelson, V. Sundström, V. Gulbinas. Nature Commun. 4, 2334 (2013). https://doi.org/10.1038/ncomms3334
- A. Melianas, V. Pranculis, Y. Xia, N. Felekidis, V. Gulbinas, M. Kemerink. Adv. Energy Mater. 7, 1602143 (2017).
- S. Baranovski, O. Rubel, in: S. Baranovski (Ed.) Charge Transport in Disordered Solids with Application in Electronics, John Wiley & Sons, Chichester, 2006, Chapter 6. P. 221–266.
- L. Onsager. Phys. Rev. 54, 554 (1938).
- K. Seki, M. Wojcik. J. Phys. Chem. C, 121, 3632 (2017).
- K.M. Hong, J. Noolandi. J. Chem. Phys. 68, 5163 (1978).
- D. Mauzerall, S.G. Ballard. Annu. Rev. Phys. Chem. 33, 377 (1982).
- H.C.F. Martens, J.N. Huiberts, P.W.M. Blom. Appl. Phys. Letters. 77, 1852 (2000). https://doi.org/10.1063/1.1311599
- A. Kumar, P.K. Bhatnagar, P.C. Mathur, M. Husain, S. Sengupta, J. Kumar. J. Appl. Phys. 98, 024502 (2005). https://doi.org/10.1063/1.1968445
- K.M. Coakley, M.D. McGehee. Chem. Mater. 16, 4533 (2004). https://doi.org/10.1021/cm049654n
- R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, A. Salleo. Nature Mater. 12, 1038 (2013).
- A. Devižis, D. Hertel, K. Meerholz, V. Gulbinas, J.-E. Moser. Organic Electronics, 15, 3729 (2014).
- V.D. Mihailetchi, J.K.J. van Duren, P.W.M. Blom, J.C. Hummelen, R.A.J. Janssen, J.M. Kroon, M.T. Rispens, W.J.H. Verhees, M.M. Wienk. Advan. Funct. Mater. 13, 43 (2003).
- S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, Y. Iwasa, Sci. Technol. Adv. Mater. 4, 371 (2003).
- J. Noolandi, K.M. Hong. J. Chem. Phys. 70, 3230 (1979).
- A.A. Bakulin, S.D. Dimitrov, A. Rao, P.C.Y. Chow, C.B. Nielsen, B.C. Schroeder, I. McCulloch, H.J. Bakker, J.R. Durrant, R.H. Friend. J. Phys. Chem. Lett. 4, 209 (2013). https://doi.org/10.1021/jz301883y
- A.A. Bakulin, C. Silva, E. Vella. J. Phys. Chem. Lett. 7, 250 (2016). https://doi.org/10.1021/acs.jpclett.5b01955
- Y. Dong, H. Cha, J. Zhang, E. Pastor, P.S. Tuladhar, I. McCulloch, J.R. Durrant, A.A. Bakulin. J. Chem. Phys. 150, 104704 (2019). https://doi.org/10.1063/1.5079285
- T. Hahn, J. Geiger, X. Blase, I. Duchemin, D. Niedzialek, S. Tscheuschner, D. Beljonne, H. Bässler, A. Köhler. Adv. Funct. Mater. 25, 1287 (2015). https://doi.org/10.1002/adfm.201403784
- G.V. Simbirtseva, N.P. Piven’, S.D. Babenko. Russ. J. Phys. Chem. B: Focus on Physics, 16, 323 (2022). https://doi.org/10.1134/S1990793122020233
- G.N. Gerasimov, V.F. Gromov, M.I. Ikim, L.I. Trakhtenberg. Russ. J. Phys. Chem. B: Focus on Physics, 15, 1072 (2021). https://doi.org/10.1134/S1990793121060038
- G.V. Simbirtseva, S.D. Babenko. Russ. J. Phys. Chem. B: Focus on Physics, 17, 1309 (2023). https://doi.org/10.1134/S1990793123060222
- R.A. Marcus and N. Sutin. Biochim. Biophys. Acta Rev. Bioenergetics, 811, 265 (1985). https://doi.org/10.1016/0304-4173(85)90014-X
- R.M. Williams, J.M. Zwier, J.W. Verhoeven. J. Am. Chem. Soc. 117, 4093 (1995). https://doi.org/10.1021/ja00119a025
- С. Leng, H. Qin, Y. Si, Y. Zhao. J. Phys. Chem. C, 118, 1843 (2014).
- H. Yan, S. Chen, M. Lu, X. Zhu, Y. Li, D. Wu, Y. Tu, X. Zhua. Mater. Horiz. 1, 247 (2014). https://doi.org/10.1039/C3MH00105A
- K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca. Phys. Rev. B, 81, 125204 (2010). https://doi.org/10.1103/PhysRevB.81.125204
- T. Unger, S. Wedler, F.J. Kahle, U. Scherf, H. Bässler, A. Köhler. J. Phys. Chem. C, 121, 22739 (2017). https://doi.org/10.1021/acs.jpcc.7b09213
- Y. Wang, L.T. Cheng. J. Phys. Chem. 96, 1530 (1992).
- Y. Wang, J. Phys. Chem. 96, 764 (1992).
- A.J. Ward , A. Ruseckas , M.M. Kareem , B. Ebenhoch, L.A. Serrano, M. Al-Eid, B. Fitzpatrick, V.M. Rotello, G. Cooke, I.D.W. Samuel. Advan. Mater. 27, 2496 (2015). https://doi.org/10.1002/adma.201405623
- B.P. Karsten, R.K.M. Bouwer, J.C. Hummelen, R.M. Williams, R.A.J. Janssen. Photochem. Photobiol. Sci. 9, 1055 (2010). https://doi.org/10.1039/c0pp00098a
- D. Veldman, S.M.A. Chopin, S.C.J. Meskers, R.A.J. Janssen. J. Phys. Chem. A, 112, 8617 (2008). https://doi.org/10.1021/jp805949r
- T. Liu, D.L. Cheung, A. Troisi. Phys. Chem. Chem. Phys. 13, 21461 (2011). https://doi.org/10.1039/C1CP23084K
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted






