Применение численного обращения преобразования лапласа для расчета плотности молекулярных состояний
- Авторы: Адамсон С.О.1, Харлампиди Д.Д.2,3, Голубков Г.В.1,4, Дьяков Ю.А.1, Морозов И.И.1, Ольхов О.А.1, Родионов И.Д.1, Родионова И.П.1, Степанов И.Г.1, Шестаков Д.В.1, Голубков М.Г.1
- 
							Учреждения: 
							- Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
- Московский педагогический государственный университет
- Российский университет дружбы народов им. Патриса Лумумбы
- Национальный исследовательский центр “Курчатовский институт”
 
- Выпуск: Том 44, № 5 (2025)
- Страницы: 3-14
- Раздел: Элементарные физико-химические процессы
- URL: https://rjeid.com/0207-401X/article/view/683908
- DOI: https://doi.org/10.31857/S0207401X25050014
- ID: 683908
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Для оценки констант скорости мономолекулярных реакций с использованием квазиравновесной статистической теории требуется информация о плотности дискретных состояний молекул. В настоящей работе предложен новый подход к расчету плотности дискретных состояний стабильных молекул и переходных комплексов, который основан на численном обращении преобразования Лапласа. Для апробации метода проведены тестовые расчеты модельных систем, включающих молекулы H₂O, NH₃, CD4 и с-C₃H₆. Показано, что при энергиях, меньших 200 ккал/моль, относительная ошибка расчета интегральной плотности дискретных состояний не превышает 0.5%. Результаты, полученные данным методом, могут быть использованы, например, для оценки констант скорости реакций с участием органических радикалов, образующихся в тропосфере и тропопаузе.
Полный текст
 
												
	                        Об авторах
С. О. Адамсон
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
							Автор, ответственный за переписку.
							Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва						
Д. Д. Харлампиди
Московский педагогический государственный университет; Российский университет дружбы народов им. Патриса Лумумбы
														Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва; Москва						
Г. В. Голубков
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук; Национальный исследовательский центр “Курчатовский институт”
														Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва; Москва						
Ю. А. Дьяков
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва						
И. И. Морозов
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва						
О. А. Ольхов
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва						
И. Д. Родионов
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва						
И. П. Родионова
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва						
И. Г. Степанов
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва						
Д. В. Шестаков
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва						
М. Г. Голубков
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: sergey.o.adamson@gmail.com
				                					                																			                												                	Россия, 							Москва						
Список литературы
- Морозов И.И., Васильев Е.С., Волков Н.Д. и др. // Хим. физика. 2022. Т. 41. № 10. С. 16. https://doi.org/10.31857/S0207401X22100089
- Adamson S.O., Kharlampidi D.D., Shtyrkova A.S. et al. // Atoms. 2023. V. 11. № 10. 132. https://doi.org/10.3390/atoms11100132
- Адамсон С.О., Харлампиди Д.Д., Штыркова А.С. и др. // Хим. физика. 2024. Т. 45. № 6. С. 3. https://doi.org/10.31857/S0207401X24060018
- Васильев Е.С., Волков Н.Д., Карпов Г.В. и др. // Журн. физ. химии. 2020. Т. 94. № 10. С. 1484. https://doi.org/10.31857/S0044453720100295
- Васильев Е.С., Волков Н.Д., Карпов Г.В. и др. // Хим. физика. 2021. Т. 40. № 10. С. 30. https://doi.org/10.31857/S0207401X21100125
- Васильев Е.С., Карпов Г.В., Шартава Д.К. и др. // Хим. физика. 2022. Т. 41. № 5. С. 10. https://doi.org/10.31857/S0207401X22050119
- Морозов И.И., Васильев Е.С., Бутковская Н.И. и др. // Хим. физика. 2023. Т. 42. № 10. C. 26. https://doi.org/10.31857/S0207401X23100114
- Dyakov Y.A., Adamson S.O., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 682. https://doi.org/10.1134/S1990793124700179
- Asplund G., Grimvall A., Jonsson S. // Chemosphere. 1994. V. 28. № 8. P. 1467. https://doi.org/10.1016/0045-6535(94)90241-0
- Hoekstra E.J. // Chemosphere. 2003. V. 52. № 2. P. 355. https://doi.org/10.1016/S0045-6535(03)00213-3
- Smith D.J., Setser D.W., Kim K.C. et al. // J. Phys. Chem. 1977. V. 81. № 9. P. 898. https://doi.org/10.1021/j100524a019
- Ebrecht J., Hack W., Wagner H.G. // Ber. Bunsenges. Phys. Chem. 1989. V. 93. № 5. P. 619. https://doi.org/10.1002/bbpc.19890930520
- Markert F., Pagsberg P. // Chem. Phys. Lett. 1993. V. 209. № 5–6. P. 445. https://doi.org/10.1016/0009-2614(93)80115-6
- Marcus R.A., Rice O.K. // J. Phys. Colloid Chem. 1951. V. 55. № 6. P. 894. https://doi.org/10.1021/j150489a013
- Marcus R.A. // J. Chem. Phys. 1952. V. 20. № 3. P. 359. https://doi.org/10.1063/1.1700424
- Baer T., Mayer P.M. // J. Am. Soc. Mass Spectrom. 1997. V. 8. № 2. P. 103. https://doi.org/10.1016/S1044-0305(96)00212-7
- Troe J. // J. Chem. Soc. Faraday Trans. 1997. V. 93. № 5. P. 885. https://doi.org/10.1039/A606453A
- Wieder G.M., Marcus R.A. // J. Chem. Phys. 1962. V. 37. № 8. P. 1835. https://doi.org/10.1063/1.1733376
- Marcus R.A. // J. Chem. Phys. 1965. V. 43. № 8. P. 2658. https://doi.org/10.1063/1.1697191
- Rosenstock H.M., Wallenstein M.B, Wahrhaftig A.L. et al. // Proc. Natl. Acad. Sci. 1952. V. 38. № 8. P. 667. https://doi.org/10.1073/pnas.38.8.667
- Rosenstock H.M. // J. Chem. Phys. 1961. V. 34. № 6. P. 2182. https://doi.org/10.1063/1.1731842
- Mozurkewich M., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6429. https://doi.org/10.1021/j150669a073
- Mozurkewich M., Lamb J.J., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6435. https://doi.org/10.1021/j150669a074
- Lamb J.J., Mozurkewich M., Benson S.W. // J. Phys. Chem. 1984. V. 88. № 25. P. 6441. https://doi.org/10.1021/j150669a075
- Nordholm S. // Chem. Phys. 1989. V. 129. № 3. P. 371. https://doi.org/10.1016/0301-0104(89)85007-4
- Harrington R.E., Rabinovitch B.S., Diesen R.W. // J. Chem. Phys. 1960. V. 32. № 4. P. 1245. https://doi.org/10.1063/1.1730882
- Schneider F.W., Rabinovitch B.S. // J. Am. Chem. Soc. 1962. V. 84. № 22. P. 4215. https://doi.org/10.1021/ja00881a006
- Current J.H., Rabinovitch B.S. // J. Chem. Phys. 1963. V. 38. № 4. P. 783. https://doi.org/10.1063/1.1733764
- Haarhoff P.C. // Mol. Phys. 1963. V. 6. № 3. P. 337. https://doi.org/10.1080/00268976300100381
- Astholz D.C., Troe J., Wieters W. // J. Chem. Phys. 1979. V. 70. № 11. P. 5107. https://doi.org/10.1063/1.437352
- Stein S.E., Rabinovitch B.S. // J. Chem. Phys. 1973. V. 58. № 6. P. 2438. https://doi.org/10.1063/1.1679522
- Beyer T., Swinehart D.F. // Commun. ACM. 1973. V. 16. № 6. P. 379. https://doi.org/10.1145/362248.362275
- Rabinovitch B.S., Diesen R.W. // J. Chem. Phys. 1959. V. 30. № 3. P. 735. https://doi.org/10.1063/1.1730036
- Rabinovitch B.S., Current J.H. // J. Chem. Phys. 1961. V. 35. № 6. P. 2250. https://doi.org/10.1063/1.1732253
- Whitten G.Z., Rabinovitch B.S. // J. Chem. Phys. 1963. V. 38. № 10. P. 2466. https://doi.org/10.1063/1.1733526
- Thiele E. // J. Chem. Phys. 1963. V. 39. № 12. P. 3258. https://doi.org/10.1063/1.1734187
- Whitten G.Z., Rabinovitch B.S. // J. Chem. Phys. 1964. V. 41. № 6. P. 1883. https://doi.org/10.1063/1.1726175
- Tardy D.C., Rabinovitch B.S., Whitten G.Z. // J. Chem. Phys. 1968. V. 48. № 3. P. 1427. https://doi.org/10.1063/1.1668840
- Berblinger M., Schlier C. // J. Chem. Phys. 1992. V. 96. № 9. P. 6834. https://doi.org/10.1063/1.462572
- Lin S.H., Eyring H. // J. Chem. Phys. 1965. V. 43. № 6. P. 2153. https://doi.org/10.1063/1.1697098
- Tou J.C., Lin S.H. // J. Chem. Phys. 1968. V. 49. № 9. P. 4181. https://doi.org/10.1063/1.1670734
- Hoare M.R., Ruijgrok T.W. // J. Chem. Phys. 1970. V. 52. № 1. P. 113. https://doi.org/10.1063/1.1672655
- Hoare M.R. // J. Chem. Phys. 1970. V. 52. № 11. P. 5695. https://doi.org/10.1063/1.1672846
- Forst W. // Chem. Rev. 1971. V. 71. № 4. P. 339. https://doi.org/10.1021/cr60272a001
- Dubner H., Abate J. // J. ACM. 1968. V. 15. № 1. P. 115. https://doi.org/10.1145/321439.321446
- Hoare M.R., Pal P. // Mol. Phys. 1971. V. 20. № 4. P. 695. https://doi.org/10.1080/00268977100100661
- Bauer S.H. // J. Chem. Phys. 1939. V. 7. № 12. P. 1097. https://doi.org/10.1063/1.1750379
- Magee J.L., Hamill W.H. // J. Chem. Phys. 1959. V. 31. № 5. P. 1380. https://doi.org/10.1063/1.1730603
- Schlag E.W., Sandsmark R.A. // J. Chem. Phys. 1962. V. 37. № 1. P. 168. https://doi.org/10.1063/1.1732944
- Haarhoff P.C. // Mol. Phys. 1964. V. 7. № 2. P. 101. https://doi.org/10.1080/00268976300100871
- Forst W., Prášil Z., St. Laurent P. // J. Chem. Phys. 1967. V. 46. № 10. P. 3736. https://doi.org/10.1063/1.1840445
- Forst W. // J. Chem. Phys. 1968. V. 48. № 8. P. 3665. https://doi.org/10.1063/1.1669667
- Döntgen M. // AIP Adv. 2016. V. 6. № 9. 095318. https://doi.org/10.1063/1.496392154.
- Lin S.H., Eyring H. // J. Chem. Phys. 1963. V. 39. № 6. P. 1577. https://doi.org/10.1063/1.1734483
- Kislov V.V., Nguyen T.L., Mebel A.M. et al. // J. Chem. Phys. 2004. V. 120. № 15. P. 7008. https://doi.org/10.1063/1.1676275
- Schlag E.W., Sandsmark R.A., Valance W.G. // J. Chem. Phys. 1964. V. 40. № 5. P. 1461. https://doi.org/10.1063/1.1725346
- Forst W., Práŝil Z. // J. Chem. Phys. 1969. V. 51. № 7. P. 3006. https://doi.org/10.1063/1.1672449
- Schmittroth L.A. // Commun. ACM. 1960. V. 3. № 3. P. 171. https://doi.org/10.1145/367149.367172
- Tolman R.C. The Principles of Statistical Mechanics. New York: Oxford University Press, 1938.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 




