The effect of surface treatment of composite polypropylene fibers on their properties
- Autores: Kirillov V.E.1,2, Yurkov G.Y.1, Prorokova N.P.3,4, Vavilova S.Y.3, Ashmarin A.A.5, Solodilov V.I.1,2, Voronov A.S.6, Zvyagintsev D.A.7, Buznik V.M.7
- 
							Afiliações: 
							- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University
- Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- Ivanovo State Polytechnic University
- A. A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
- The Joint Stock Company State Research Center Of The Russian Federation Troitsk Institute For Innovation And Fusion Research
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
 
- Edição: Volume 44, Nº 2 (2025)
- Páginas: 99-110
- Seção: Chemical physics of polymeric materials
- URL: https://rjeid.com/0207-401X/article/view/681131
- DOI: https://doi.org/10.31857/S0207401X25020106
- ID: 681131
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Composite materials containing zinc sulfide nanoparticles on the surface of microgranules of ultrafine polytetrafluoroethylene were obtained by thermal decomposition. The obtained materials were used to modify polypropylene fibers. The obtained filaments were examined by X-ray phase analysis and electron microscopy. Their mechanical and antibacterial properties have been studied. The particle sizes range from 7 to 30 nm. The application of the modifier makes the manifestation of edge defects less noticeable, which has a positive effect on their mechanical properties, such as modulus of elasticity and tensile strength. In addition, modification of polypropylene fibers leads to an increase in the antimicrobial properties of the modified thread.
Texto integral
 
												
	                        Sobre autores
V. Kirillov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University
							Autor responsável pela correspondência
							Email: kirillovladislav@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Moscow						
G. Yurkov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
N. Prorokova
Krestov Institute of Solution Chemistry of the Russian Academy of Sciences; Ivanovo State Polytechnic University
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Rússia, 							Ivanovo; Ivanovo						
S. Vavilova
Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Rússia, 							Ivanovo						
A. Ashmarin
A. A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
V. Solodilov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Moscow						
A. Voronov
The Joint Stock Company State Research Center Of The Russian Federation Troitsk Institute For Innovation And Fusion Research
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Rússia, 							Moscow, Troitsk						
D. Zvyagintsev
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
V. Buznik
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- A.A. Popov, A.K. Zykova, E.E. Mastalygina. Russ. J. Phys. Chem. B 14, 533 (2020). https://doi.org/10.1134/S1990793120030239
- A.M. Kuperman, Yu.A. Gorbatkina, R.A. Turusov. Russ. J. Phys. Chem. B 6, 553 (2012). https://doi.org/10.1134/S1990793112080064
- E. Berber, N. Horzum, B. Hazer, M.M. Demir. Fibers Polym 17, 760 (2016). https://doi.org/10.1007/s12221-016-6183-7
- S.K. Esthappan, S.K. Kuttappan, R. Joseph. Materials & Design 37, 537 (2012). https://doi.org/10.1016/j.matdes.2012.01.038
- A.S. Ruhov, T.D. Malinovskaya, V. Sachkov, M.A. Mishchenko, AMR 880, 229 (2014). https://doi.org/10.4028/www.scientific.net/AMR.880.229
- D. Marković, H.-H. Tseng, T. Nunney, M. Radoičić, T. Ilic-Tomic, M. Radetić. Applied Surface Science 527, 146829 (2020). https://doi.org/10.1016/j.apsusc.2020.146829
- H.H. Alsharief, G.A.A. Al-Hazmi, S.O. Alzahrani, A. Almahri, N.A. Alamrani, N.M. Alatawi, N.M. El-Metwaly. Journal of Materials Research and Technology 20, 3146 (2022). https://doi.org/10.1016/j.jmrt.2022.08.104
- C.-H. Tseng, C.-C. Wang, C.-Y. Chen. J. Phys. Chem. B 110, 4020 (2006). https://doi.org/10.1021/jp055896e
- G. Zhang, Y. Xiao, J. Yan, N. Xie, R. Liu, Y. Zhang, Polymers 11, 1841 (2019). https://doi.org/10.3390/polym11111841
- B. Kord. Journal of Thermoplastic Composite Materials 25, 793 (2012). https://doi.org/10.1177/0892705711411344
- M. Tutak, M. Dogan, Fibers Polym 16, 2337 (2015). https://doi.org/10.1007/s12221-015-5213-1
- N.P. Prorokova, S.Yu. Vavilova, M.I. Biryukova, G.Yu. Yurkov, V.M. Buznik. Nanotechnol Russia 9, 533 (2014). https://doi.org/10.1134/S1995078014050140
- L.E. Lange, S.K. Obendorf. Arch Environ Contam Toxicol 62, 185 (2012). https://doi.org/10.1007/s00244-011-9702-y
- A.C. Nechifor, S. Cotorcea, C. Bungău, P.C. Albu, D. Pașcu, O. Oprea, A.R. Grosu, A. Pîrțac, G. Nechifor, Membranes 11, 256 (2021). https://doi.org/10.3390/membranes11040256
- V.A. Aleksandrova, A.M. Futoryanskaya. Russ. J. Phys. Chem. B 17, 1394 (2023). https://doi.org/10.1134/S1990793123060143
- R. Dastjerdi, M. Montazer, S. Shahsavan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 345, 202 (2009). https://doi.org/10.1016/j.colsurfa.2009.05.007
- K.K. Goli, N. Gera, X. Liu, B.M. Rao, O.J. Rojas,J. Genzer. ACS Appl. Mater. Interfaces 5, 5298 (2013). https://doi.org/10.1021/am4011644
- M. Radetić. J. Mater Sci 48, 95 (2013). https://doi.org/10.1007/s10853-012-6677-7
- A.N. Klyamkina, P.M. Nedorezova, A.M. Aladyshev, Russ. J. Phys. Chem. B 17, 1355 (2023). https://doi.org/10.1134/s1990793123060052
- A. Tiwari, S.J. Dhoble. RSC Adv. 6, 64400 (2016). https://doi.org/10.1039/C6RA13108E
- W.F. Razumov. Russ. J. Phys. Chem. B 17, 36 (2023). https://doi.org/10.1134/S199079312301027X
- V.V. Danilov, A.S. Panfutova, V.B. Shilov, I.M. Belousova, G.M. Ermolaeva, A.I. Khrebtov, D.A. Videnichev. Russ. J. Phys. Chem. B 9, 561 (2015). https://doi.org/10.1134/S199079311504017X
- F. Zhao, G. Li, G. Zhang, T. Wang, Q. Wang. Wear 380–381, 86 (2017). https://doi.org/10.1016/j.wear.2017.03.007
- H. Noor, S.M. Faraz, M.W. Hanif, M. Ishaq, A. Zafar, S. Riaz, S. Naseem. Physica B: Condensed Matter 650, 414572 (2023). https://doi.org/10.1016/j.physb.2022.414572
- L. Wang, J. Ju, N. Deng, G. Wang, B. Cheng, W. Kang. Electrochemistry Communications 96, 1 (2018). https://doi.org/10.1016/j.elecom.2018.08.018
- S. Lv, Y. Han, L. Shuai, B. Chen, J. Wan. Journal of Luminescence 239, 118303 (2021). https://doi.org/10.1016/j.jlumin.2021.118303
- Y. Xin, Z. Jiang, W. Li, Z. Huang, C. Wang. Pigment & Resin Technology 44, 74 (2015). https://doi.org/10.1108/PRT-09-2013-0084
- N. Prorokova, S. Vavilova. Coatings 11, 830 (2021). https://doi.org/10.3390/coatings11070830
- A.M. Zhukov, V.I. Solodilov, I.V. Tretyakov, E.A. Burakova, G.Yu. Yurkov. Russ. J. Phys. Chem. B 16, 926 (2022). https://doi.org/10.1134/S199079312205013X
- N.P. Prorokova, S.Yu. Vavilova, O.Yu. Kuznetsov, V.M. Buznik. Nanotechnol Russia 10, 732 (2015). https://doi.org/10.1134/S1995078015050171
- N.P. Prorokova, S.Y. Vavilova, V.M. Bouznik. Journal of Fluorine Chemistry 204, 50 (2017). https://doi.org/10.1016/j.jfluchem.2017.10.009
- V.E. Kirillov, G.Y. Yurkov, M.S. Korobov, A.S. Voronov, V.I. Solodilov, V.M. Bouznik. Russ. J. Phys. Chem. B 17, 1346 (2023). https://doi.org/10.1134/S1990793123060040
- S.P. Gubin, G.Yu. Yurkov, M.S. Korobov, Yu.A. Koksharov, A.V. Kozinkin, I.V. Pirog, S.V. Zubkov, V.V. Kitaev, D.A. Sarichev, V.M. Bouznik, A.K. Tsvetnikov. Acta Materialia 53, 1407 (2005). https://doi.org/10.1016/j.actamat.2004.11.033
- Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions (Withdrawn 2010). https://www.astm.org/e2149-01.html
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




