The effect of surface treatment of composite polypropylene fibers on their properties
- Authors: Kirillov V.E.1,2, Yurkov G.Y.1, Prorokova N.P.3,4, Vavilova S.Y.3, Ashmarin A.A.5, Solodilov V.I.1,2, Voronov A.S.6, Zvyagintsev D.A.7, Buznik V.M.7
- 
							Affiliations: 
							- N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University
- Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
- Ivanovo State Polytechnic University
- A. A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
- The Joint Stock Company State Research Center Of The Russian Federation Troitsk Institute For Innovation And Fusion Research
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
 
- Issue: Vol 44, No 2 (2025)
- Pages: 99-110
- Section: Chemical physics of polymeric materials
- URL: https://rjeid.com/0207-401X/article/view/681131
- DOI: https://doi.org/10.31857/S0207401X25020106
- ID: 681131
Cite item
Abstract
Composite materials containing zinc sulfide nanoparticles on the surface of microgranules of ultrafine polytetrafluoroethylene were obtained by thermal decomposition. The obtained materials were used to modify polypropylene fibers. The obtained filaments were examined by X-ray phase analysis and electron microscopy. Their mechanical and antibacterial properties have been studied. The particle sizes range from 7 to 30 nm. The application of the modifier makes the manifestation of edge defects less noticeable, which has a positive effect on their mechanical properties, such as modulus of elasticity and tensile strength. In addition, modification of polypropylene fibers leads to an increase in the antimicrobial properties of the modified thread.
Full Text
 
												
	                        About the authors
V. E. Kirillov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University
							Author for correspondence.
							Email: kirillovladislav@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow; Moscow						
G. Y. Yurkov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
N. P. Prorokova
Krestov Institute of Solution Chemistry of the Russian Academy of Sciences; Ivanovo State Polytechnic University
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Russian Federation, 							Ivanovo; Ivanovo						
S. Y. Vavilova
Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Russian Federation, 							Ivanovo						
A. A. Ashmarin
A. A. Baykov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
V. I. Solodilov
N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow; Moscow						
A. S. Voronov
The Joint Stock Company State Research Center Of The Russian Federation Troitsk Institute For Innovation And Fusion Research
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow, Troitsk						
D. A. Zvyagintsev
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
V. M. Buznik
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: kirillovladislav@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- A.A. Popov, A.K. Zykova, E.E. Mastalygina. Russ. J. Phys. Chem. B 14, 533 (2020). https://doi.org/10.1134/S1990793120030239
- A.M. Kuperman, Yu.A. Gorbatkina, R.A. Turusov. Russ. J. Phys. Chem. B 6, 553 (2012). https://doi.org/10.1134/S1990793112080064
- E. Berber, N. Horzum, B. Hazer, M.M. Demir. Fibers Polym 17, 760 (2016). https://doi.org/10.1007/s12221-016-6183-7
- S.K. Esthappan, S.K. Kuttappan, R. Joseph. Materials & Design 37, 537 (2012). https://doi.org/10.1016/j.matdes.2012.01.038
- A.S. Ruhov, T.D. Malinovskaya, V. Sachkov, M.A. Mishchenko, AMR 880, 229 (2014). https://doi.org/10.4028/www.scientific.net/AMR.880.229
- D. Marković, H.-H. Tseng, T. Nunney, M. Radoičić, T. Ilic-Tomic, M. Radetić. Applied Surface Science 527, 146829 (2020). https://doi.org/10.1016/j.apsusc.2020.146829
- H.H. Alsharief, G.A.A. Al-Hazmi, S.O. Alzahrani, A. Almahri, N.A. Alamrani, N.M. Alatawi, N.M. El-Metwaly. Journal of Materials Research and Technology 20, 3146 (2022). https://doi.org/10.1016/j.jmrt.2022.08.104
- C.-H. Tseng, C.-C. Wang, C.-Y. Chen. J. Phys. Chem. B 110, 4020 (2006). https://doi.org/10.1021/jp055896e
- G. Zhang, Y. Xiao, J. Yan, N. Xie, R. Liu, Y. Zhang, Polymers 11, 1841 (2019). https://doi.org/10.3390/polym11111841
- B. Kord. Journal of Thermoplastic Composite Materials 25, 793 (2012). https://doi.org/10.1177/0892705711411344
- M. Tutak, M. Dogan, Fibers Polym 16, 2337 (2015). https://doi.org/10.1007/s12221-015-5213-1
- N.P. Prorokova, S.Yu. Vavilova, M.I. Biryukova, G.Yu. Yurkov, V.M. Buznik. Nanotechnol Russia 9, 533 (2014). https://doi.org/10.1134/S1995078014050140
- L.E. Lange, S.K. Obendorf. Arch Environ Contam Toxicol 62, 185 (2012). https://doi.org/10.1007/s00244-011-9702-y
- A.C. Nechifor, S. Cotorcea, C. Bungău, P.C. Albu, D. Pașcu, O. Oprea, A.R. Grosu, A. Pîrțac, G. Nechifor, Membranes 11, 256 (2021). https://doi.org/10.3390/membranes11040256
- V.A. Aleksandrova, A.M. Futoryanskaya. Russ. J. Phys. Chem. B 17, 1394 (2023). https://doi.org/10.1134/S1990793123060143
- R. Dastjerdi, M. Montazer, S. Shahsavan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 345, 202 (2009). https://doi.org/10.1016/j.colsurfa.2009.05.007
- K.K. Goli, N. Gera, X. Liu, B.M. Rao, O.J. Rojas,J. Genzer. ACS Appl. Mater. Interfaces 5, 5298 (2013). https://doi.org/10.1021/am4011644
- M. Radetić. J. Mater Sci 48, 95 (2013). https://doi.org/10.1007/s10853-012-6677-7
- A.N. Klyamkina, P.M. Nedorezova, A.M. Aladyshev, Russ. J. Phys. Chem. B 17, 1355 (2023). https://doi.org/10.1134/s1990793123060052
- A. Tiwari, S.J. Dhoble. RSC Adv. 6, 64400 (2016). https://doi.org/10.1039/C6RA13108E
- W.F. Razumov. Russ. J. Phys. Chem. B 17, 36 (2023). https://doi.org/10.1134/S199079312301027X
- V.V. Danilov, A.S. Panfutova, V.B. Shilov, I.M. Belousova, G.M. Ermolaeva, A.I. Khrebtov, D.A. Videnichev. Russ. J. Phys. Chem. B 9, 561 (2015). https://doi.org/10.1134/S199079311504017X
- F. Zhao, G. Li, G. Zhang, T. Wang, Q. Wang. Wear 380–381, 86 (2017). https://doi.org/10.1016/j.wear.2017.03.007
- H. Noor, S.M. Faraz, M.W. Hanif, M. Ishaq, A. Zafar, S. Riaz, S. Naseem. Physica B: Condensed Matter 650, 414572 (2023). https://doi.org/10.1016/j.physb.2022.414572
- L. Wang, J. Ju, N. Deng, G. Wang, B. Cheng, W. Kang. Electrochemistry Communications 96, 1 (2018). https://doi.org/10.1016/j.elecom.2018.08.018
- S. Lv, Y. Han, L. Shuai, B. Chen, J. Wan. Journal of Luminescence 239, 118303 (2021). https://doi.org/10.1016/j.jlumin.2021.118303
- Y. Xin, Z. Jiang, W. Li, Z. Huang, C. Wang. Pigment & Resin Technology 44, 74 (2015). https://doi.org/10.1108/PRT-09-2013-0084
- N. Prorokova, S. Vavilova. Coatings 11, 830 (2021). https://doi.org/10.3390/coatings11070830
- A.M. Zhukov, V.I. Solodilov, I.V. Tretyakov, E.A. Burakova, G.Yu. Yurkov. Russ. J. Phys. Chem. B 16, 926 (2022). https://doi.org/10.1134/S199079312205013X
- N.P. Prorokova, S.Yu. Vavilova, O.Yu. Kuznetsov, V.M. Buznik. Nanotechnol Russia 10, 732 (2015). https://doi.org/10.1134/S1995078015050171
- N.P. Prorokova, S.Y. Vavilova, V.M. Bouznik. Journal of Fluorine Chemistry 204, 50 (2017). https://doi.org/10.1016/j.jfluchem.2017.10.009
- V.E. Kirillov, G.Y. Yurkov, M.S. Korobov, A.S. Voronov, V.I. Solodilov, V.M. Bouznik. Russ. J. Phys. Chem. B 17, 1346 (2023). https://doi.org/10.1134/S1990793123060040
- S.P. Gubin, G.Yu. Yurkov, M.S. Korobov, Yu.A. Koksharov, A.V. Kozinkin, I.V. Pirog, S.V. Zubkov, V.V. Kitaev, D.A. Sarichev, V.M. Bouznik, A.K. Tsvetnikov. Acta Materialia 53, 1407 (2005). https://doi.org/10.1016/j.actamat.2004.11.033
- Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions (Withdrawn 2010). https://www.astm.org/e2149-01.html
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted



