Investigation of the Influence of UV Radiation on Compositions of Polylactide with Graphite Nanoplates
- Autores: Gasymov M.M.1, Rogovina S.Z.1, Kuznetsova O.P.1, Perepelitsyna E.O.2, Shevchenko V.G.1,3, Lomakin S.M.1,4, Berlin A.A.1
- 
							Afiliações: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Federal State Research Center for Chemical Physics and Medical Chemistry, Russian Academy of Sciences
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
 
- Edição: Volume 43, Nº 3 (2024)
- Páginas: 112-121
- Seção: Chemical physics of polymeric materials
- URL: https://rjeid.com/0207-401X/article/view/674979
- DOI: https://doi.org/10.31857/S0207401X24030121
- EDN: https://elibrary.ru/VFNIAA
- ID: 674979
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Composites of polyether polylactide (PLA) synthesized from natural raw materials with graphite nanoplates (GNP), which represent a new type of composite materials based on biodegradable polymers, were obtained by solid-phase method under the action of shear deformations. The porosity of composites was evaluated and their electrical and mechanical properties were studied. The effect of UV radiation on the molecular weight and molecular weight distribution of PLA in PLA-GNP composites of different compositions was investigated using the method of excision chromatography (EC), and the effect of the GNP nanofiller content on the change of their mechanical characteristics in the process of radiation was shown.
Texto integral
 
												
	                        Sobre autores
M. Gasymov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: S.Rogovina@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
S. Rogovina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: S.Rogovina@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
O. Kuznetsova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: S.Rogovina@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
E. Perepelitsyna
Federal State Research Center for Chemical Physics and Medical Chemistry, Russian Academy of Sciences
														Email: S.Rogovina@mail.ru
				                					                																			                												                	Rússia, 							Chernogolovka						
V. Shevchenko
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences
														Email: S.Rogovina@mail.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
S. Lomakin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: S.Rogovina@mail.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
A. Berlin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: S.Rogovina@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Chieng B.W., Ibrahim N.A., Yunus W.M.Z.W. et al. // Polymer. 2014. V. 6. P. 2232; https://doi.org/10.3390/polym6082232
- Papageorgiou D.J., Kinloch I.A., Young R.J. // Prog. Mater. Sci. 2017. V. 90. P. 75; https://doi.org/10.1016/j.pmatsci.2017.07.004
- Jem K.J., van der Pol J.F., de Vos S. Microbial Lactic Acid, Its Polymer Poly (lactic acid) and their industrial Applications. Plastics from Bacteria: Natural Functions and Applications. Gorinchem, The Netherlands: Royal Society of Chemistry, 2010; https://doi.org/10.1007/978-3-642-03287-5_13
- Garlotta D.A. // J. Polym. Environ. 2001. V. 19. Р. 63; https://doi.org/10.1023/A:1020200822435
- Jimenez A., Peltzer M., Ruseckaite R. Poly (lactic acid) Science and Technology Processing, Properties, Additives and Applications. Cambridge: Royal Society of Chemistry, 2015; https://doi.org/10.1039/9781782624806-FP005
- Zhang M., Ding X., Zhan Y., Wang Y., Wang X. // J. Hazard. Mater. 2020. V. 384. P. 121260; https://doi.org/10.1016/j.jhazmat.2019.121260
- Tawiah B., Bin Y., Richard K.K. Y. et al. // Carbon. 2019. V. 150. P. 8; https://doi.org/10.1016/j.carbon.2019.05.002
- Rogovina S.Z., Gasymov M.M., Lomakin S.M., Kuznetsova O.P. et al. // Mech. Compos. Mater. 2023. V. 58. P. 845; https://doi.org/10.1007/s11029-023-10073-2
- Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // Polym. Cryst. 2022. V. 2022. P. 1; https://doi.org/10.1155/2022/4367582
- Hideto T., Hiroaki S., Yoshihiro S. // J. Polym. Environ. 2012. V. 20. P. 706; https://doi.org/10.1007/s10924-012-0424-7
- Angelin T.S., Ananthi V., Abhispa B., Nallathambi S. et al. // Int. J. Biol. Macromol. 2023. V. 234. P. 123703; https://doi.org/10.1016/j.ijbiomac.2023.123703
- Olewnik-Kruszkowska E., Koter I., Skopińska-Wiśniewska J. et al. // J. Photochem. Photobiol. A. Chem. 2015. V. 311. P. 114; 10.1016/j.jphotochem.2015.06.029' target='_blank'>http://dx.doi.org/doi: 10.1016/j.jphotochem.2015.06.029
- Smykovskaya R.S., Kuznetsova O.P., Medintseva T.I. et al. // Russ. J. Phys. Chem. 2022. V. 41. P. 1.
- Sasov A., Van Dyck D. // J. Microscopy. 1998. V. 191. P. 151; https://doi.org/10.5772/32264
- Medintseva T.I., Sergeev A.I., Shilkina N.G. et al. // Russ. J. Phys. Chem. 2023. V. 42. P. 61; https://doi.org/10.31857/S0207401X23050096
- Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // Appl. Sci. 2023. V. 13. P. 3920; https://doi.org/10.3390/app13063920
- Rogovina S.Z., Lomakin S.M., Usachev S.V. et al. // J. Appl. Polym. Sci. 2019. V. 136. P. 47598; https://doi.org/10.1002/app.47598
- Jonscher A.K. // Nature. 1977. V. 267. P. 673; https://doi.org/10.1038/267673a0
- Rogovina S.Z., Lomakin S.M., Gasymov M.M. et al. // Polym. Sci. Ser. D. 2022. V. 6. P. 11; https://doi.org/10.31044/1994-6260-2022-0-6-11-19
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







