Parameters of decomposition and combustion of reed vegetation: 1. Mechanism and kinetics of thermo-oxidative decomposition and pyrolysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The parameters of decomposition and combustion of reed plants are formulated, which characterize combustible material and are necessary for physical and mathematical modeling of the occurrence and development of a fire, determining the risk of its consequences. According to the results of TGA, the content of the main components in the leaves and stem of the plant was estimated, the mechanism and parameters of the macrokinetics of their thermal-oxidative decomposition and pyrolysis were determined.

Full Text

Restricted Access

About the authors

R. M. Aseeva

State Fire Academy of Emercom of Russia

Email: 89268196698@mail.ru
Russian Federation, Moscow

E. Yu. Kruglov

State Fire Academy of Emercom of Russia

Author for correspondence.
Email: 89268196698@mail.ru
Russian Federation, Moscow

A. A. Kobelev

State Fire Academy of Emercom of Russia

Email: 89268196698@mail.ru
Russian Federation, Moscow

Y. K. Naganovsky

All-Russian Research Institute for Fire Protection

Email: 89268196698@mail.ru
Russian Federation, Balashikha city

B. B. Serkov

State Fire Academy of Emercom of Russia

Email: 89268196698@mail.ru
Russian Federation, Moscow

References

  1. Glushkov I.V., Lupachik V.V., Zhuravleva I.V. et al. // Forest science issues. 2021. V. 4(2). № 84. https://doi.org/10.31509/2658-607x-2021424
  2. Berlin A.A. // Polymer Science Series. C. 2021. V. 63. P. 1. https://doi.org/10.1134/S181123822101001X
  3. Rybalkina M. // https://161.ru/text/incidents/ 2020/03/28/69057250/
  4. Kislov V.M., Tsvetkov M.V., Zaichenko A.Yu. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 819. https://doi.org/10.1134/S1990793121050055
  5. Kask U., Kask L., Link S. // Mire. Peat. 2013. V. 13. № 5.
  6. Alhumade H., da Silva J.C.G., Ahmad M.S. et al. // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 385.
  7. Peres Ch.B., Rosa A.H., De Morais L.C. // SN Appl. Sci. 2021. V. 3. № 337. https://doi.org/10.1007/s42452-021-04345-6
  8. Li J., Qiao Y., Zong P. et al. // Energy Fuels. 2019. V. 33. P. 3299.
  9. Smirnova A.N., Shvydkiy V.O., Shishkina L.N. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 710. https://doi.org/10.1134/S1990793121040102
  10. Wasserman L.A., Plashchina I.G., Filatova A.G., Khatefov E.B., Goldshtein V.G. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 161. https://doi.org/10.1134/S1990793121010292
  11. Shafizadeh F., McGinnis G.D. // Carbohydr. Res. 1971. V. 16. P. 273.
  12. Bonanno G., Giudice R.Lo. // Ecol. Indic. 2010. V. 10. № 3. P. 639. https://doi.org/10.1016/j.ecolind.2009.11.002
  13. Kissinger H.E. // Anal. Chem. 1957. V. 29. № 11. P. 1702. https://doi.org/10.1021/ac60131a045
  14. Mamleev V., Bourbigot S., Le Bras M. et al. // J. Therm. Anal. Calorim. 2004. V. 78. № 3. P.1009. https://doi.org/10.1007/s10973-004-0467-7
  15. Mamleev V., Bourbigot S., Yvon J. // J. Anal. Appl. Pyrolysis. 2007. V. 80. P. 151. https://doi.org/10.1016/j.jaap.2007.01.013
  16. Сriado J.M. // Thermochim. Acta. 1978. V. 24. № 1. P. 186. https://doi.org/10.1016/0040-6031(78)85151-x
  17. Rogers F.E., Ohlemiller T.J. // J. Macromol. Sci.-Chem. 1981. V. 15. № 1. P. 169. https://doi.org/10.1080/00222338108066438
  18. Gorbachev V.M. // J. Therm. Anal. 1975. V. 8. P. 349. https://doi.org/10.1007/BF01904012
  19. Aseeva R.M., Sakharov P.A., Sakharov A.M. // Russ. J. Chem. Phys. B. 2009. V. 3. № 5. P. 844.
  20. Aleshina L.A., Glazkova S.V., Lugovskaya L.A. et al. // Chemistry Plant Raw Materials. 2001. V. 1. P. 5.
  21. Perova A.N., Brevnov P.N., Usachev S.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 716. https://doi.org/10.1134/S1990793121040072
  22. Kim U.J., Eom S.H., Wada M. et al. // Polym. Degrad. Stabil. 2010. V. 95. № 5. P. 778. https://doi.org/10.1016/j.polymdegradstab.2010.02.009
  23. Wang Z., McDonald A., Westerhof R. et al. // J. Anal. Appl. Pyrolysis. 2013. V. 100. P. 56. https://doi.org/10.1016/j.jaap.2012.11.017
  24. Paajanen A., Rinta-Paavola A., Vaari J. // Cellulose. 2021. V. 28. № 14. P. 8987. https://doi.org/10.1016/j.tca.2012.11.003
  25. Pérez-Maqueda L.A., Perejón A., Criado J.M. // Thermochim. Acta. 2013. V. 552. P. 54. https://doi.org/10.1016/j.tca.2012.11.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a – TG, b – DTG, c – DSC curves of the TOD of a reed leaf, obtained by heating the sample at a rate of 5 °C/min.

Download (233KB)
3. Fig. 2. a – TG, b – DTG, c – DSC curves of the TOD of a reed stem when heating the sample at a rate of 20 °C/min.

Download (234KB)
4. Fig. 3. TG and DTG curves of mass loss when heating a sheet to a temperature of 700 °C at a rate of 5 °C/min first in nitrogen, then in air.

Download (92KB)
5. Fig. 4. TG and DTG curves of mass loss when heating the stem to a temperature of 700 °C at a rate of 5 °C/min first in nitrogen, then in air.

Download (100KB)
6. Fig. 5. Anamorphoses of kinetic curves of TOD components of reed leaf (a) and stem (b) : 1 – extractives; 2 – hemicellulose; 3 – amorphous cellulose; 4 – crystalline cellulose; 5 – lignin; 6 – coke; Χ – values obtained on a Mettler Toledo installation; Ο – on a Du Pont 9900.

Download (115KB)
7. Fig. 6. TG and DTG curves of reed leaf decomposition in a nitrogen flow at different heating rates: 1 – 5, 2 – 10, 3 – 20 °C/min.

Download (110KB)
8. Fig. 7. TG and DTG curves of stem decomposition in a nitrogen flow at different heating rates: 1 – 5, 2 – 10, 3 – 20 °C/min.

Download (104KB)

Copyright (c) 2024 Russian Academy of Sciences