Solid Products of NO2 and O3 Uptake on Methane Flame Soot
- 作者: Eganov A.A.1, Kardonsky D.A.1, Sulimenkov I.V.2, Kozlovskiy V.I.2, Aparina E.V.2, Zelenov V.V.2
- 
							隶属关系: 
							- Sechenov First Moscow State Medical University
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
 
- 期: 卷 42, 编号 4 (2023)
- 页面: 81-88
- 栏目: Химическая физика атмосферных явлений
- URL: https://rjeid.com/0207-401X/article/view/674882
- DOI: https://doi.org/10.31857/S0207401X23040064
- EDN: https://elibrary.ru/MWMISN
- ID: 674882
如何引用文章
详细
Using a flow reactor with a movable insert and mass-spectrometric control of the gas composition, methane soot samples are treated with O3 and NO2 reagents until the surface is completely poisoned. A solution of the initial methane soot in acetonitrile and solid products of its reaction with oxidizing reagents O3 and NO2 is analyzed using high-resolution mass spectrometry with an electrospray ion source and gas chromatography (GC)–mass spectrometry (MS) with electron ionization. It is established that the original soot contains a number of aromatic compounds, including polycyclic compounds, which are completely consumed in the reaction with these oxidizing agents. Compounds from the paraffin class remain inert with respect to NO2 and O3. The products of the ozonization of prenitrated soot are the same as those of simple ozonation. The number of ozonation products is much higher than similar nitration products. This is the reason for the reactivity of nitrated soot with respect to the ozone uptake.
作者简介
A. Eganov
Sechenov First Moscow State Medical University
														Email: v.zelenov48@gmail.com
				                					                																			                												                								Moscow, Russia						
D. Kardonsky
Sechenov First Moscow State Medical University
														Email: v.zelenov48@gmail.com
				                					                																			                												                								Moscow, Russia						
I. Sulimenkov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: v.zelenov48@gmail.com
				                					                																			                												                								Moscow, Russia						
V. Kozlovskiy
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: v.zelenov48@gmail.com
				                					                																			                												                								Moscow, Russia						
E. Aparina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: v.zelenov48@gmail.com
				                					                																			                												                								Moscow, Russia						
V. Zelenov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: v.zelenov48@gmail.com
				                					                																			                												                								Moscow, Russia						
参考
- Roberts-Semple D., Song F., Gao Yu. // Atmos. Pollut. Res. 2012. V. 3. P. 247; www.atmospolres.com
- Liu Yu., Tang G., Liu B. et al. // Atmos. Environ. 2022. V. 275. P. 119018; https://doi.org/10.1016/jatmosenv.2022.119018
- Schumann U., Huntrieser H. // Atmos. Chem. Phys. 2007. V. 7. P. 3823; www.atmos-chem-phys.net/7/3823/2007/
- Washenfelder R.A., Wagner N.L., Dubé W.P., Brown S.S. // Environ. Sci. Technol. 2011. V. 45. P. 2938; https://doi.org/10.1021/es103340u
- Ларин И.К. // Хим. физика. 2019. Т. 38. №5. С. 81; https://doi.org/10.1134/S0207401X1905008X
- Ларин И.К., Алоян А.Е., Ермаков А.Н. // Хим. физика. 2021. Т. 40. № 5. С. 86; https://doi.org/10.31857/S0207401X21050095
- Ларин И.К. // Хим. физика. 2022. Т. 41. № 5. С. 371; https://doi.org/10/31857/S0207401X22050089
- Xiong X., Liu X., Wu W. et al. // Atmos. Environ. 2022. V. 273. P. 118956; https://doi.org/10.1016/j.atmosenv.2022.118956
- Aas W., Tsyro S., Bieber E. et al. // Atmos. Chem. Phys. 2012. V. 12. P. 8073; https://doi.org/10.5194/acp-12-8073-2012
- Sharma S.K., Karapurkar S.G., Shenoy D.M., Mandal T.K. // J. Atmos. Chem. 2022. V. 79. P. 67; https://doi.org/10.1007/s10874-022-09429-0
- Berner A., Sidla S., Galambos Z. et al. // J. Geophys. Res. Atmospheres. 1996. V. 101. P. 19559; https://doi.org/10.1029/95JD03425
- Pohl K., Cantwell M., Herckes P., Lohmann R. // Atmos. Chem. Phys. 2014. V. 14. P. 7431; https://doi.org/10.5194/acp-14-7431-2014,2014
- Bond T.C., Streets D.G., Yarber K.F. et al. // J. Geophys. Res. 2004. V. 109. D14203; https://doi.org/10.1029/2003JD003697
- Wang R., Tao S., Shen H. et al. // Environ. Sci. Technol. 2014. V. 48. P. 6780; https://doi.org/10.1021/es5021422
- Klimont Z., Kupiainen K., Heyes C. et al. // Atmos. Chem. Phys. 2017. V. 17. P. 8681; https://doi.org/10.5194/acp-8681-2017
- Akhter M.S., Chughtai A.R., Smith D.M. // Applied Spec. 1985. V. 39. P. 143; https://doi.org/10.1366/0003702854249114
- Stadler D., Rossi M.J. // Phys. Chem. Chem. Phys. 2000. V. 2. P. 5420; https://doi.org/10.1039/b005680o
- Cain J.P., Gassman P.L., Wang H., Laskin A. // Phys. Chem. Chem. Phys. 2010. V. 12. P. 5206; https://doi.org/10.1039/b924344e
- Smedley J.M., Williams A., Bartle K.D. // Combust.and Flame 1992. V. 91. P. 71; https://doi.org/10.1016/0010-2180(92)90128-C
- Siegmann K., Hepp H., Sattler K. // Combust. Sci. Technol. 1995. V. 109. P. 165; https://doi.org/10.1080/00102209508951900
- Onischuk A.A., di Stasio S., Karasev V.V. et al. // Aerosol Sci. 2003. V. 34. P. 383; https://doi.org/10.1016/S0021-8502(02)00215-X
- Dobbings R.A., Fletcher R.A., Chang H.-C. // Combust. and Flame. 1998. V. 115. P. 285; https://doi.org/10.1016/S0010-2180(98)00010-8
- Oktem B., Tolocka M.P., Zhao B. et al. // Combust. and Flame. 2005. V. 142. P. 364; https://doi.org/10.1016/j.combustflame.2005.03.016
- Hafner W.D., Carlson D.L., Hites R.A. // Environ. Sci. Technol. 2005. V. 39. P. 7374; https://doi.org/10.1021/es0508673
- Lang C., Tao S., Liu W. et al. // Environ. Sci. Technol. 2008. V. 42. P. 5156; https://doi.org/10.1021/es800453n
- Li W., Park R., Alexandrou N. et al. // Environ. Sci. Technol. 2021. V. 55. P. 2254; https://doi.org/10.1021/acs.est.0c07079
- Ringuet J., Albinet A., Leoz-Garziandia E. et al. // Atmos. Environ. 2012. V. 61. P. 15; https://doi.org/10.1016/j.atmosenv.2012.07.025
- Roy R., Jan R., Gunjal G. et al. // Atmos. Environ. 2019. V. 210. P. 47; https://doi.org/10.1016/j.atmosenv.2019.04.034
- Liu Y., Liu C., Ma J. et al. // Phys. Chem. Chem. Phys. 2010. V. 12. P. 10896; https://doi.org/10.1039/c0cp00402b
- Burkholder J.B., Sander S.P., Abbatt J.P.D. et al. “Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation № 19”. Pasadena: NASA JPL Publication 19-5, 2019; http://jpldataeval.jpl.nasa.gov
- Akhter M.S., Chughtai A.R., Smith D.M. // J. Phys. Chem. 1984. V. 88. P. 5334; https://doi.org/10.1021/j.150666a046
- Smith D.M., Chughtai A.R. // J. Geophys. Res. 1996. V. 101D. P. 19607; https://doi.org/10.1029/95JD03032
- Kirchner U., Scheer V., Vogt R. // J. Phys. Chem. A. 2000. V. 104. P. 8908; https://doi.org/10.1021/jp0005322
- Han C., Liu Y., He H. // Atmos. Environ. 2013. V. 64. P. 270; https://doi.org/10.1016/j.atmosenv.2012.10.008
- Зеленов В.В., Апарина Е.В. // Хим. физика. 2023. Т. 42. № 1. С. 73; https://doi.org/10.31857/S0207401X23010144
- Kozlovski V., Brusov V., Sulimenkov I. et al. // Rapid Commun. Mass Spectrom. 2004. V. 18. P. 780; https://doi.org/10.1002/rcm.1405
- www.sisweb.com/software/ms/nist.htm
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					

