DECENTRALIZED CONDITIONAL GRADIENT METHOD ON TIME-VARIABLE GRAPHS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we consider a generalization of the decentralized Frank-Wulff algorithm for network time variables, study the convergence properties of the algorithm, and carry out the corresponding numerical experiments. The changing network is modeled as a deterministic or stochastic sequence of graphs.

Sobre autores

R. Vedernikov

Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: vedernikov.ra@phystech.edu
Russia, 141701, Moscow region, Dolgoprudny, Institutskiy per., 9

A. Rogozin

Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: aleksandr.rogozin@phystech.edu
Russia, 141701, Moscow region, Dolgoprudny, Institutskiy per., 9

A. Gasnikov

Institute for Information Transmission Problems of the RAS (Kharkevich Institute)
; Caucasian Mathematical Center of the Adyghe State University

Autor responsável pela correspondência
Email: gasnikov@yandex.ru
Russia, 127051, Moscow, Bolshoi Karetny lane, 19, build. 1; Republic of Adygea, 385016, Maykop, st. Pervomaiskaya, 208

Bibliografia

  1. Braun G., Carderera A., Combettes C.W. Hassani H., Karbasi A. Mokhtari A., Pokutta S. arXiv (2022) https://arxiv.org/pdf/2211.14103.pdf
  2. Левитин Е.С., Поляк Б.Т. Методы минимизации при наличии ограничений. Журнал вычислительной математики и математической физики 6.5. 1966. P. 787–823.
  3. Nedic Angelia. Distributed gradient methods for convex machine learning problems in networks: Distributed optimization. IEEE Signal Processing Magazine 37.3. 2020. P. 92–101.
  4. Forero Pedro A., Alfonso Cano, and Georgios B. Giannakis. Consensus-based distributed linear support vector machines. Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks. 2010.
  5. Gan Lingwen, Ufuk Topcu, and Steven H. Low. Optimal decentralized protocol for electric vehicle charging. IEEE Transactions on Power Systems 28.2. 2012. P. 940–951.
  6. Ram Sundhar Srinivasan, Venugopal V. Veeravalli, and Angelia Nedic. Distributed non-autonomous power control through distributed convex optimization. IEEE INFOCOM 2009. IEEE, 2009.
  7. Ren Wei, and Randal W. Beard. Distributed consensus in multi-vehicle cooperative control. V. 27. № 2. London: Springer London, 2008.
  8. Rogozin A., Gasnikov A., Beznosikov A., Kovalev D. Decentralized convex optimization over time-varying graphs: a survey. arXiv (2022) https://arxiv.org/pdf/2210.09719.pdf
  9. Wai Hoi-To et al. Decentralized Frank–Wolfe algorithm for convex and nonconvex problems. IEEE Transactions on Automatic Control 62.11. 2017. P. 5522–5537.
  10. Райгородский А.М. Модели случайных графов и их применения. Труды Московского физико-технического института, 2010.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (335KB)
3.

Baixar (172KB)

Declaração de direitos autorais © Р.А. Ведерников, А.В. Рогозин, А.В. Гасников, 2023