Ditopic Centrosymmetric Mercaptobenzothiazole Dilithium Salts: From the Molecular Complex to Luminescent 1D Metal-Organic Frameworks
- Autores: Rogozhin A.F.1, Ilyichev V.A.1, Silantyeva L.I.1, Kozlova E.A.1, Fukin G.K.1, Bochkarev M.N.1
- 
							Afiliações: 
							- Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
 
- Edição: Volume 50, Nº 10 (2024)
- Páginas: 669-678
- Seção: Articles
- URL: https://rjeid.com/0132-344X/article/view/667655
- DOI: https://doi.org/10.31857/S0132344X24100048
- EDN: https://elibrary.ru/LPVOOX
- ID: 667655
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The reaction of lithium amide LiN(Si(Me)3)2 and ditopic heterocyclic ligand benzo[1,2-d:4,5-d′]bis(thiazole)-2,6(3H,7H)-dithione (H2L) in dimethoxyethane (DME) affords the binuclear molecular complex Li2L(DME)4 (I). New compounds [[Li2L(ДМСО)4 • (ДМСО)2]n (II) and [Li2L(ДМСО)4 • (ТГФ)2]n (III) are prepared by the recrystallization of compound I using a DMSO–diethyl ether or DMSO/THF mixture of solvents, respectively. According to the XRD data, these compounds are one-dimensional metalorganic frameworks (MOFs) differed by the arrangement of the bis(thiazole) fragments relative to each other and the Li2O2 fragment in the polymer chain, which affects the luminescence properties. The molecular structures of compounds I–III are determined by XRD (CIF files CCDC nos. 2334192 (I), 2334193 (II), and 2334194 (III)).
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Rogozhin
Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: atonrog@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
V. Ilyichev
Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
														Email: atonrog@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
L. Silantyeva
Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
														Email: atonrog@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
E. Kozlova
Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
														Email: atonrog@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
G. Fukin
Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
														Email: atonrog@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
M. Bochkarev
Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences
														Email: atonrog@iomc.ras.ru
				                					                																			                												                	Rússia, 							Nizhny Novgorod						
Bibliografia
- Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Chem. 2022. V. 63. P. 671.
- Zhang Y., Yuan S., Day G. et al // Coord. Chem. Rev. 2018. V. 354. P. 28.
- Yu. X., Ryadun A.A., Pavlov D.I. et al. // Angew. Chem. 2023. V. 135. Art. e202306680.
- Liu. Y. Y., Zhang., J., Sun L. X. et al. // Inorg. Chem. Commun. 2008. V. 11. P. 396.
- Yoon M., Srirambalaji R., Kim K. // Chem. Rev. 2012. V. 112. P. 1196.
- Suh M. P., Park H. J., Prasad T.K. et al. // Chem. Rev. 2012. V. 112. P. 782.
- Sapchenko S.A., Barsukova M.O., Belosludov R.V. et al // Inorg. Chem. 2012. V. 58. P. 6811.
- Abrahams B.F., Grannas M.J., Hudson T.A. et al. // Angew. Chem. Int. Ed. 2010. V. 122. P. 1105.
- Xie L-H., Lin J-B., Liu X.M. et al. // Inorg. Chem. 2010. V. 49. P. 1158.
- White K.F., Abrahams B.F., Babarao R. et al. // Chem. Eur. J. 2015. V. 21. P. 18057.
- Wang C., Zhang T., Lin W. // Chem. Rev. 2012. V. 112. P. 1084.
- Wang X., Wang Y., Wang Y. et al. // Chem. Commun. 2019. V. 56. P. 233.
- Mínguez Espallargas G., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533.
- Lestar M., Lusi M., O’Leary A. et al. // CrystEngComm. 2018. V. 20. P. 5940.
- Gou L., Zhang H.X., Fan X.Y. et al. // Inorg. Chim. Acta. 2013. V. 394. P.10.
- Xiang J., Chang C., Li M. et al. // Cryst. Growth. Des. 2008. V. 8. P. 280.
- Chen H., Armand M., Courty M. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 8984.
- Yeung H.H.M., Kosa M., Parrinello M. et al. // Cryst. Growth. Des. 2011. V. 11. P. 221.
- Walker W., Grugeon S., Vezin H. et al. // Electrochem. Commun. 2010. V. 12. P. 1348.
- Liu, R.B. Zhu, J., Dai Y. et al. // Z. Anorg. Allg. Chem. 2013. V. 639. P. 569.
- Zhao X., Shimazu M.S., Chen X. // Angew. Chem. Int. Ed. 2018. V. 57. P. 6208.
- Cheng P.C., Lin W.C., Tseng F.S. et al. // Dalton Trans. 2013. V. 42. P. 2765.
- Thuéry P. // CrystEngComm. 2014. V. 16. P. 1724.
- White K.F., Abrahams B.F., Hudson T.A. et al. // ChemРlusСhem. 2016. V. 81. P. 877.
- Pugh D., Ashworth E., Robertson K. et al. // Cryst. Growth. Des. 2019. V. 19. P. 487.
- Koltunova T.K., Samsonenko D.G., Rakhmanova M.I. // Russ. Chem. Bull. 2015. V. 64. P. 2903.
- Clough A., Zheng S.T., Zhao X. et al. // Cryst. Growth. Des. 2014. V. 14. P. 897.
- Cheng P.C., Li B.H., Tsen F.S. et al. // Polymers. 2019. V. 11. P. 126.
- Zeng R.H., Li X.P., Qiu Y.C. et al. // Electrochem. Commun. 2010. V. 12. P. 1253.
- Tominaka S., Yeung H.H.M., Henke S. et al. // Cryst EngComm. 2016. V. 18. P. 398.
- Zhao X., Wu T., Zheng S.T. et al. // Chem. Commun. 2011. V. 47. P. 5536.
- Zheng S.T., Li Y., Wu T. et al. // Chem. Eur. J. 2010. V. 16. P. 13035.
- Chen X., Bu X., Lin Q. et al. // Cryst. Growth. Des. 2016. V. 16. P. 6531.
- Bazyakina N.L., Moskalev M.V., Cherkasov A.V. et al. // CrystEngComm. 2022. V. 24. P. 2297.
- Nadeem M., Bhatti M.H., Yunus U. et al. // Inorg. Chim. Acta. 2018. V. 479. P. 179.
- Abdelbaky M.S.M., Amghouz Z., García-Granda S. et al. // Dalton Trans. 2014. V. 43. P. 5739.
- Abdelbaky M.S.M., Amghouz Z., García-Granda,S. et al. // Polymers. 2016. V. 8. P. 86.
- Rogozhin A.F., Ilichev V.A., Fagin A.A. et al. // New J. Chem. 2022. V. 46. P. 13987.
- Ilichev V.A., Rogozhin A.F., Rumyantcev R.V. et al. // Inorg. Chem. 2023. V. 62. P. 12625.
- SAINT. Data Reduction and Correction Program. Version 8.27B. Madison (WI, USA): Bruker AXS, 2014
- Rigaku Oxford Diffraction. CrysAlis Pro software system. Version 1.171.41.122a. Wroclaw (Poland): Rigaku Corporation, 2021.
- Sheldrick G.M. SADABS-2012/1. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS, 2012.
- Sheldrick G.M. // Acta Crystfllogr. A. 2015. V. 71. P. 3
- Sheldrick G.M. // Acta Crystfllogr. C. 2015. V. 71. P. 3
- Janiak C. // J. Chem. Soc. Dalton. Trans. 2000. P. 3885.
- Zhao W., He Z., Tang B.Z. // Nat. Rev. Mater. 2020. V. 5. P. 869.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








