Effect of the Solvent Nature on a Spin Equilibrium in the Solutions of the Phenylboron-Capped Hexa-n-Butylsulfide Cobalt(II) Clathrochelate Stadied by the Paramagnetic NMR Spectroscopy
- Authors: Aleshin D.Y.1,2, Zlobina V.V.3, Belov A.S.4, Voloshin Y.Z.4, Pavlov A.A.2,4
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Bauman Moscow State Technical University
- Moscow Institute of Physics and Technology (National Research University)
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
 
- Issue: Vol 50, No 2 (2024)
- Pages: 85-91
- Section: Articles
- URL: https://rjeid.com/0132-344X/article/view/667616
- DOI: https://doi.org/10.31857/S0132344X24020021
- EDN: https://elibrary.ru/OSFIWG
- ID: 667616
Cite item
Abstract
A spin state of the phenylbon-capped hexa-n-butylsulfide cobalt(II) clathrochelate in solutions was studied by paramagnetic NMR spectroscopy. This cage complex is found to undergo the temperature – induced spin crossover in solvents of different nature (acetonitrile, chloroform, dichloromethane, and benzene). The previously developed method for an analysis of paramagnetic shifts in NMR spectra allows to calculate of the thermodynamic parameters (enthalpy and entropy) of a given spin equilibrium in the solutions. In spite of the conformational rigidity of the macrobicyclic tris-α-dioximate molecules, the substantial changes in their electronic structures and spin crossover parameters were observed, being affected by a polarity of the solvent used. This provides an opportunity for the fine tuning of spin switch characteristics by changing this medium parameter.
Full Text
 
												
	                        About the authors
D. Yu. Aleshin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Bauman Moscow State Technical University
														Email: a.pavlov@emtc.ru
				                					                																			                												                	Russian Federation, 							Moscow; Moscow						
V. V. Zlobina
Moscow Institute of Physics and Technology (National Research University)
														Email: a.pavlov@emtc.ru
				                					                																			                												                	Russian Federation, 							Dolgoprudnyi, Moscow oblast						
A. S. Belov
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: a.pavlov@emtc.ru
				                					                																			                												                	Russian Federation, 							Moscow						
Ya. Z. Voloshin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: a.pavlov@emtc.ru
				                					                																			                												                	Russian Federation, 							Moscow						
A. A. Pavlov
Bauman Moscow State Technical University; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
							Author for correspondence.
							Email: a.pavlov@emtc.ru
				                					                																			                												                	Russian Federation, 							Moscow; Moscow						
References
- Gamez P., Costa J. S., Quesada M. et al. // Dalton Trans. 2009. № 38. P. 7845.
- Kumar K. S., Ruben M. // Angew. Chem. Int. Ed. 2021. V. 60. № 14. P. 7502.
- Lefter C., Davesne V., Salmon L. et al. // Magnetochemistry. 2016. V. 2. № 1. P. 18.
- Manrique-Juarez M.D., Rat S., Salmon L. et al. // Coord. Chem. Rev. 2016. V. 308. P. 395.
- Jeon I.-R., Park J. G., Haney C. R. et al. // Chem. Sci. 2014. V. 5. № 6. C. 2461.
- Gentili D., Demitri N., Schäfer B. et al. // J. Mater. Chem. C. 2015. V. 3. № 30. P. 7836.
- Tissot A., Kesse X., Giannopoulou S. et al. // Chem. Commun. 2019. V. 55. № 2. P. 194.
- Wei R.-J., Tao J., Huang R.-B. et al. // Inorg. Chem. 2011. V. 50. № 17. P. 8553.
- Lada Z. G., Andrikopoulos K. S., Mathioudakis G. N. et al. // Magnetochemistry. 2022. V. 8. № 2. P. 16.
- Clemente-Juan J.M., Coronado E., Gaita-Ariño A. // Chem. Soc. Rev. 2012. V. 41. № 22. P. 7464.
- Bousseksou A., Boukheddaden K., Goiran M. et al. // Phys. Rev. B. 2002. V. 65. № 17. P. 172412.
- Gütlich P., Ksenofontov V., Gaspar A. B. // Coord. Chem. Rev. 2005. V. 249. № 17–18. P. 1811.
- Ohkoshi S.-i., Hashimoto K. // J. Photochem. Photobiol. 2001. V. 2. № 1. P. 71.
- Hosokawa H., Funasako Y., Mochida T. // Chem. Eur. J. 2014. V. 20. № 46. P. 15014.
- Halcrow M. A. // Coord. Chem. Rev. 2009. V. 253. № 21–22. P. 2493.
- Halcrow M. A. // Crystals. 2016. V. 6. № 5. P. 58.
- Krivokapic I., Zerara M., Daku M. L. et al. // Coord. Chem. Rev. 2007. V. 251. № 3–4. P. 364.
- Hayami S., Komatsu Y., Shimizu T. et al. // Coord. Chem. Rev. 2011. V. 255. № 17–18. P. 1981.
- Voloshin Y. Z., Kostromina N. A., Krämer R. Clathrochelates: Synthesis, Structure and Properties. Elsevier, 2002. 419 p.
- Voloshin Y., Belaya I., Krämer R. Cage Metal Complexes: Clathrochelates Revisited. Springer, 2017. 467 p.
- Novikov V. V., Pavlov A. A., Belov A. S. et al.// J. Phys. Chem. Lett. 2014. V. 5. № 21. P. 3799–3803.
- Voloshin Y. Z., Novikov V. V., Nelyubina Y. V. // RSC Adv. 2015. V. 5. № 89. P. 72621.
- Novikov V. V., Pavlov A. A., Nelyubina Y. V. et al. // J. Am. Chem. Soc. 2015. V. 137. № 31. P. 9792.
- Novikov V. V., Ananyev I. V., Pavlov A. A. et al. // J. Phys. Chem. Lett. 2014. V. 5. № 3. P. 496.
- Pavlov A. A., Nelyubina Y. V., Kats S. V. et al. // J. Phys. Chem. Lett. 2016. V. 7. № 20. P. 4111.
- Novikov V. V., Pavlov A. A., Nehrkorn J. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 756. https://doi.org/10.1134/S1070328420110056
- Voloshin Y. Z., Varzatskii O. A., Novikov V. V. et al. // Eur. J. Inorg. Chem. 2010. P. 5401.
- Pavlov A. A., Denisov G. L., Kiskin M. A. et al // Inorg. Chem. 2017. V. 56. № 24. P. 14759.
- Pavlov A. A., Aleshin D., Nikovskiy I. A. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 23. P. 2819.
- Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. № 1. P. 73.
- Perdew J. P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. C. 3865.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. T. 7. № 18. P. 3297.
- Kossmann S., Neese F. // Chem. Phys. Lett. 2009. T. 481. № 4–6. P. 240.
- Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
- Rodriguez‐Castañeda F., Haberz P., Leonov A. et al.// Magn Reson Chem. 2006. V. 44. № S1. P. S10.
- Pavlov A. A., Novikov V. V., Nikovskiy I. A. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. № 2. P. 1167.
- Pavlov A. A., Nehrkorn J., Zubkevich S. V. et al. // Inorg. Chem. 2020. V. 59. № 15. P. 10746–10755.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted




