Synthesis and structures of mixed-ligand lead(II) complexes with decahydro-closo-decaborate anion and azheterocyclic ligands
- Authors: Avdeeva V.V.1, Kubasov A.S.1, Kozerozhets I.V.1, Nikiforova S.E.1, Malinina E.A.1, Kuznetsov N.T.1
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- Issue: Vol 50, No 12 (2024)
- Pages: 853–859
- Section: Articles
- URL: https://rjeid.com/0132-344X/article/view/676749
- DOI: https://doi.org/10.31857/S0132344X24120052
- EDN: https://elibrary.ru/LMDMIW
- ID: 676749
Cite item
Abstract
Lead(II) complexation reactions were studied in the presence of salts of the closo-decaborate anion [B10H10]2– and azaheterocyclic ligands 2,2΄-bipyridyl (bipy) or 1,10-phenanthroline (phen) in water and organic solvents (acetonitrile, DMF). Binuclear complex Pb(bipy)2[B10H10] and polymer complex [Pb(phen)[B10H10]] were isolated. The effect of solvents and reagent ratios on the composition and structures of the final complexes was studied. The complex compounds were identified by elemental analysis, IR spectroscopy, and X-ray powder diffraction. The structure of complex [Pb(bipy)2[B10H10]]2 ⋅ 2CH3CN (CCDC no. 2325841) was determined by single-crystal X-ray diffraction.
Full Text
 
												
	                        About the authors
V. V. Avdeeva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Author for correspondence.
							Email: avdeeva.varvara@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow						
A. S. Kubasov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: avdeeva.varvara@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow						
I. V. Kozerozhets
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: avdeeva.varvara@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow						
S. E. Nikiforova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: avdeeva.varvara@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow						
E. A. Malinina
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: avdeeva.varvara@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow						
N. T. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: avdeeva.varvara@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Greenwood N.N., Earnshaw A. Chemistry of the Elements. School of Chemistry, University of Leeds, U. K. Butterworth-Heinemann, 1997.
- Boron Science: New Technologies and Applications / Ed. Hosmane N. S. CRC Press, 2012.
- Boron-Based Compounds: Potential and Emerging Applications in Medicine / Eds. Hey-Hawkins E., Viñas Teixidor C. John Wiley & Sons Ltd., 2018. https://doi.org/10.1002/9781119275602
- King R.B. // Chem. Rev. 2001. V. 101. P. 1119. https://doi.org/10.1021/cr000442t
- Chen Z., King R.B. // Chem. Rev. 2005. V. 105. P. 3613. https://doi.org/10.1021/cr0300892
- Ren L., Han Y., Hou X., Wu J. // Chem. 2021. V. 7. P. 3442. https://doi.org/10.1016/j.chempr.2021.11.003
- Klyukin I.N., Vlasova Yu.S., Novikov A.S. et al. // Symmetry. 2021. V. 13. P. 464. https://doi.org/10.3390/sym13030464
- Kal’tenberg A.A., Bashilova A.D., Somov N.V. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1247. https://doi.org/10.1134/S0036023623700286
- Stogniy M.Y., Bogdanova E.V., Anufriev S.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1537. https://doi.org/10.1134/S0036023622600848
- Núñez R., Romero I., Teixidor F., Viñas C. // Chem. Soc. Rev. 2016. V. 45. P. 5147. https://doi.org/10.1039/C6CS00159A
- Las’kova Y.N., Serdyukov A.A., Sivaev I.B. // Russ. J. Inorg. Chem. 2023. V. 68. P. 621. https://doi.org/10.1134/S0036023623600612
- Malinina E.A., Kubasov A.S., Nikiforova S.E. et al. // Polyhedron. 2024. V. 247. P. 116710. https://doi.org/10.1016/j.poly.2023.116710
- Exner R.M., Jenne C., Wegener B. // Z. Anorg. Allg. Chem. 2021. V. 647. P. 500. https://doi.org/10.1002/zaac.202000479
- Avdeeva V.V., Buzanov G.A., Malinina E.A. et al. // Crystals. 2020. V. 10. P. 389. https://doi.org/10.3390/cryst10050389
- Avdeeva V.V., Kubasov A.S., Golubev A.V. et al. // Inorg. Chim. Acta. 2023. V. 556. P. 121675. https://doi.org/10.1016/j.ica.2023.121675
- Zhdanov A.P., Voinova V.V., Klyukin I.N. et al. // Russ. J. Coord. Chem. 2019. V. 45. P. 563. https://doi.org/10.1134/S1070328419080098
- Malischewski M., Peryshkov D.V., Bukovsky E.V. et al. // Inorg. Chem. 2016. V. 55. P. 12254. https://doi.org/10.1021/acs.inorgchem.6b01980
- Volkov O., Hu C., Paetzold P. // Z. Anorg. Allg. Chem. 2005. V. 631. P. 1107. https://doi.org/10.1002/zaac.200400518
- Avdeeva V.V., Vologzhanina A.V., Korolenko S.E. et al. // Polyhedron. 2022. V. 223. P. 115932. https://doi.org/10.1016/j.poly.2022.115932
- Tiritiris I., Schleid T. // Z. Anorg. Allg. Chem. 2004. V. 630. P. 1555. https://doi.org/10.1002/zaac.200400167
- Tiritiris I., Schleid, T. // Z. Anorg. Allg. Chem. 2003. V. 629. P. 581. https://doi.org/10.1002/ZAAC.200390095
- Avdeeva V.V., Malinina E.A., Zhizhin K.Yu., Kuznetsov N.T. // Russ. J. Coord. Chem. 2021. V. 47. P. 519. https://doi.org/10.1134/S1070328421080017
- Malinina E.A., Kubasov A.S., Matveev E.Y. et al. // Polyhedron. 2023. V. 242. P. 116516. doi: 10.1016/j.poly.2023.116516
- Matveev E.Y., Avdeeva V.V., Kubasov A.S. et al. // Inorganics. 2023. V. 11. P. 144. https://doi.org/10.3390/inorganics11040144
- Lagun V.L., Katser S.B., Orlova A.M. et al. // Russ. J. Coord. Chem. 1992. V. 84. P. 365.
- Malinina E.A., Solntsev K.A., Butman L.A., Kuznetsov N.T. // Russ. J. Coord. Chim. 1989. V. 15. P. 1039.
- Lagun V.L., Orlova A.M., Katser S.V., et al. // Russ. J. Coord. Chem. 1994. V. 20. P. 431.
- Lagun V.L., Solntsev K.A., Katser S.V. et al. // Russ. J. Coord. Chem. 1994. V. 20. P. 504.
- Tiritiris I., Van N.-D., Schleid T. // Z. Anorg. Allg. Chem. 2011. V. 637. P. 682. https://doi.org/10.1002/zaac.201000457
- Avdeeva V.V., Vologzhanina A.V., Buzin M.I. et al. // Chem. Eur. J. 2017. V. 23. P. 16819. https://doi.org/10.1002/chem.201703285
- Avdeeva V.V., Polyakova I.N., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. P. 1247. https://doi.org/10.1134/S0036023614110047
- Malinina E.A., Goeva L.V., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2009. V. 54. P. 417. https://doi.org/10.1134/S0036023609030152
- Matveev E.Y., Avdeeva V.V., Kubasov A.S. et al. // Inorganics. 2023. V. 11. P. 144. https://doi.org/10.3390/inorganics11040144
- Matveev E.Y., Dontsova O.S., Avdeeva V.V. et al. // Molecules. 2023. V. 28. P. 8073. https://doi.org/10.3390/molecules28248073
- Miller H.C., Miller N.E., Muetterties E.L. // J. Am. Chem. Soc. 1963. V. 85. P. 3885. https://doi.org/10.1021/ja00906a033
- Bruker, SAINT, Bruker AXS Inc., Madison, WI, 2018.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D., J. Appl. Crystallogr. 2015. V. 48. P. 3. https://doi.org/10.1107/S1600576714022985
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- Turner M.J., McKinnon J.J., Wolff S.K. et al. // CrystalExplorer17.5. Perth: University of Western Australia, 2017).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted



