Optimization of the synthesis of salts [V10O28]6– for the preparation of [VO2(DMSO)4](CF3SO3) and its immobilization on polyethylene terephthalate for catalytic applications
- Authors: Abramov P.A.1, Kompan’kov N.B.1, Sulyaeva V.S.1, Sokolov M.N.1
- 
							Affiliations: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
 
- Issue: Vol 50, No 12 (2024)
- Pages: 809-817
- Section: Articles
- URL: https://rjeid.com/0132-344X/article/view/676738
- DOI: https://doi.org/10.31857/S0132344X24120017
- EDN: https://elibrary.ru/LMIEVQ
- ID: 676738
Cite item
Abstract
Aspects of the synthesis and isolation of (Bu4N)3[H3V10O28] (I) and Na6[V10O28] · 18H2O (II) from one reaction mixture are considered. The procedure for the synthesis of compound I is optimized. The reaction of compound I and HSO3CF3 in dimethyl sulfoxide (DMSO) affords complex [VO2(DMSO)4](CF3SO3) (III). A possibility of using complex III for the preparation of catalytically active materials based on polyethylene terephthalate (PET) is shown.
Keywords
Full Text
 
												
	                        About the authors
P. A. Abramov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: abramov@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk						
N. B. Kompan’kov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: abramov@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk						
V. S. Sulyaeva
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: abramov@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk						
M. N. Sokolov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: abramov@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk						
References
- Pope M.T. Heteropoly and Isopoly Oxometalates. Berlin: Springer-Verlag, 1983. https://www.springer.com/gp/book/9783662120064 (accessed September 21, 2017)
- Kozhevnikov I.V. // Polyoxometal. Mol. Sci. 2003. V. 98. P. 351.
- Kozhevnikov I.., Kloetstra K.., Sinnema A. et al. // J. Mol. Catal. A. 1996. V. 114. № 1–3. P. 287. https://doi.org/10.1016/S1381-1169(96)00328-7
- Johnson H.N., Kirkbright G.F., Whitehouse R.J. // Anal. Chem. 1973. V. 45. № 9. P. 1603. https://doi.org/10.1021/ac60331a032
- Dubovik D.B., Tikhomirova T.I., Ivanov A.V. et al. // J. Anal. Chem. 2003. V. 58. P. 802. https://doi.org/10.1023/A:1025672831189
- Negrin A. // Clin. Chem. 1969. V. 15. № 9. P. 829. https://doi.org/10.1093/clinchem/15.9.829
- Scott J.E. // J. Histochem. Cytochem. 1971. V. 19. № 11. P. 689. https://doi.org/10.1177/19.11.689
- Sternberg M.Z. // Biotechnol. Bioeng. 1970. V. 12. № 1. P. 1. https://doi.org/10.1002/bit.260120102
- Yamase T. // Mol. Eng. 1993. V. 3. № 1–3. P. 241. https://doi.org/10.1007/BF00999636
- Raza R., Matin A., Sarwar S. et al. // Dalton Trans. 2012. V. 41. № 47. P. 14329. https://doi.org/10.1039/c2dt31784b
- Moore F.W., Tsigdinos G.A. // J. Less Common Met. 1977. V. 54. № 1. P. 297. https://doi.org/10.1016/0022-5088(77)90151-5
- Tsigdinos G.A. // Top. Curr. Chem. 1978. p. 14. https://doi.org/10.1007/BFb0047026
- Miras H.N., Cooper G.J.T., Long D.-L. et al. // Science.. 2010. V. 327. № 5961. P. 72. https://doi.org/10.1126/science.1181735
- Christie L.G., Surman A.J., Scullion R.A. et al. // Angew. Chem. Int. Ed. 2016. V. 55. № 41. P. 12741. https://doi.org/10.1002/anie.201606005
- Müller A., Kögerler P., Dress A.W.M.W.M. // Coord. Chem. Rev. 2001. V. 222. № 1. P. 193. https://doi.org/10.1016/S0010-8545(01)00391-5
- Lian X.-K., Chen H.-B., Lin Y.-D. et al. // Coord. Chem. Rev. 2023. V. 497. P. 215440. https://doi.org/10.1016/j.ccr.2023.215440
- Lv W., Han S.-D., Li X.-Y. et al. // Coord. Chem. Rev. 2023. V. 495. P. 215376. https://doi.org/10.1016/j.ccr.2023.215376
- Granadeiro C.M., Julião D., Ribeiro S.O. et al. // Coord. Chem. Rev. 2023. V. 476. P. 214914. https://doi.org/10.1016/j.ccr.2022.214914
- Zhang H., Li A., Li K. et al. // Nature. 2023. V. 616. № 7957. P. 482. https://doi.org/10.1038/s41586-023-05840-z
- Nyman M., Deblonde G. // Nature. 2023. V. 616. № 7957. P. 438. https://doi.org/10.1038/d415860023001019-8
- Liu C., Zhang Z., Liu W. et al. // Green Energy Environ. 2017. V. 2. № 4. P. 436. https://doi.org/10.1016/j.gee.2016.12.003
- Cai X., Xu Q., Tu G. et al. // Front. Chem. 2019. V. 7:42.? https://doi.org/10.3389/fchem.2019.00042
- Song J., Luo Z., Britt D.K. et al. // J. Am. Chem. Soc. 2011. V. 133. № 42. P. 16839. https://doi.org/10.1021/ja203695h
- Monakhov K.Y., Bensch W., Kögerler P. // Chem. Soc. Rev. 2015. V. 44. № 23. https://doi.org/10.1039/C5CS00531K
- Wendt M., Warzok U., Näther C. et al. // Chem. Sci. 2016. V. 7. № 4. P. 2684. https://doi.org/10.1039/C5SC04571A
- Ma P., Hu F., Wang J. et al. // Coord. Chem. Rev. 2018. V. 378. P. 281. https://doi.org/10.1016/J.CCR.2018.02.010
- Aureliano M., Gumerova N.I., Sciortino G. et al. // Coord. Chem. Rev. 2021. V. 447. P. 214143. https://doi.org/10.1016/j.ccr.2021.214143
- Wang J., Liu X., Du Z. et al. // Dalton Trans. 2021. V. 50. № 23. P. 7871. https://doi.org/10.1039/D1DT00494H
- Li J., Zhang D., Chi Y. et al. // Polyoxometalates. 2022. V. 1. № 2. P. 9140012. https://doi.org/10.26599/POM.2022.9140012
- Anjass M., Lowe G.A., Streb C. // Angew. Chem. Int. Ed. 2021. V. 60. № 14. P. 7522. https://doi.org/10.1002/anie.202010577
- Fraqueza G., Aureliano M. // BiTaP MDPI. 2022, p. 8 https://doi.org/10.3390/BiTaP-12844
- Shuvaeva O. V., Zhdanov A.A., Romanova T.E. et al. // Dalton Trans. 2017. V. 46. № 11. P. 3541. https://doi.org/10.1039/C6DT04843A
- Volchek V. V., Kompankov N.B., Sokolov M.N. et al. // Molecules. 2022. V. 27. № 23. P. 8368. https://doi.org/10.3390/molecules27238368
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
- Klemperer W.G. // Inorg. Synth. 1990. p. 74. https://doi.org/10.1002/9780470132586.ch15
- Domaille P.J. // J. Am. Chem. Soc. 1984. V. 106. № 25. P. 7677. https://doi.org/10.1021/ja00337a004
- Durif A., Averbuch-Pouchot M.T., Guitel J.C. // Acta Crystallogr. B. 1980. V. 36. № 3. P. 680. https://doi.org/10.1107/S0567740880004116
- Bošnjaković-Pavlović N., Prévost J., Spasojević-de Biré A. // Cryst. Growth Des. 2011. V. 11. № 9. P. 3778. https://doi.org/10.1021/cg200236d
- Krakowiak J., Lundberg D., Persson I. // Inorg. Chem. 2012. V. 51. № 18. P. 9598. https://doi.org/10.1021/ic300202f
- Guselnikova O., Svanda J., Postnikov P. et al. // Adv. Mater. Interfaces. 2017. V. 4. № 5. https://doi.org/10.1002/admi.201600886
- Guselnikova O., Elashnikov R., Postnikov P. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 43. P. 37461. https://doi.org/10.1021/acsami.8b06840
- Guselnikova O., Barras A., Addad A. et al. // Sep. Purif. Technol. 2020. V. 240. P. 116627. https://doi.org/10.1016/j.seppur.2020.116627
- Guselnikova O., Semyonov O., Kirgina M. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 2. P. 107105. https://doi.org/10.1016/j.jece.2021.107105
- Semyonov O., Chaemchuen S., Ivanov A. et al. // Appl. Mater. Today. 2021. V. 22. P. 100910. https://doi.org/10.1016/j.apmt.2020.100910
- Kogolev D., Semyonov O., Metalnikova N. et al. // J. Mater. Chem. A. 2023. V. 11. № 3. P. 1108. https://doi.org/10.1039/D2TA08127J
- Guselnikova O., Semyonov O., Sviridova E. et al. // Chem. Soc. Rev. 2023. V. 52. № 14. P. 4755. https://doi.org/10.1039/D2CS00689H
- Licini G., Conte V., Coletti A. et al. // Coord. Chem. Rev. 2011. V. 255. № 19–20. P. 2345. https://doi.org/10.1016/j.ccr.2011.05.004
- Langeslay R.R., Kaphan D.M., Marshall C.L. et al. // Chem. Rev. 2019. V. 119. № 4. P. 2128. https://doi.org/10.1021/acs.chemrev.8b00245
- Maksimchuk N. V., Kholdeeva O.A., Kovalenko K.A. et al. // Isr. J. Chem. 2011. V. 51. № 2. P. 281. https://doi.org/10.1002/ijch.201000082
- Evtushok V.Y., Suboch A.N., Podyacheva O.Y. et al. // ACS Catal. 2018. V. 8. № 2. P. 1297. https://doi.org/10.1021/acscatal.7b03933
- Rodikova Y.A., Zhizhina E.G., Pai Z.P. // Appl. Catal. A. 2018. V. 549. P. 216. https://doi.org/10.1016/j.apcata.2017.09.022
- Palion-Gazda J., Luz A., Raposo L.R. et al. // Molecules. 2021. V. 26. № 21. P. 6364. https://doi.org/10.3390/molecules26216364
- Zhao L., Yang P., Shi S. et al. // ACS Catal. 2022. V. 12. № 24. P. 15249. https://doi.org/10.1021/acscatal.2c04601
- Kikukawa Y., Sakamoto Y., Hirasawa H. et al. // Catal. Sci. Technol. 2022. V. 12. № 8. P. 2438. https://doi.org/10.1039/D1CY02103F
- Fomenko I.S., Gushchin A.L., Abramov P.A. et al. // Catalysts. 2019. V. 9. № 3.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted










