Mechanism of the Formation of trans- and cis-Isomers of the bis (chelate) Pd(II) and Pt(II) Complexes Based on (N,O(S, Se))-Bidentate Azomethines. А Quantum-Chemical Study
- Authors: Kharabayev N.N.1, Steglenko D.V.1, Minkin V.I.1
- 
							Affiliations: 
							- Research Institute of Physical and Organic Chemistry, Southern Federal University
 
- Issue: Vol 50, No 11 (2024)
- Pages: 799-806
- Section: Articles
- URL: https://rjeid.com/0132-344X/article/view/667651
- DOI: https://doi.org/10.31857/S0132344X24110059
- EDN: https://elibrary.ru/LMQIXM
- ID: 667651
Cite item
Abstract
The molecular structures and relative energies of trans- and cis-isomers of bis(chelate) complexes of Pd(II) and Pt(II) salicylal-, thiosalicylal-, and selenosalicylaldiiminates are calculated using the density functional theory. The role of the kinetic factor in the formation of the trans- and cis-isomers of the PdL2 and PtL2 complexes is studied in the framework of the model of the step-by-step formation of the bis(ligand) metal complexes ML2 (M++ + (L)– → (ML)+, (ML)+ + (L)–→ ML2). The competition of the trans- and cis-isomers of the PdL2 and PtL2 bis(chelate) azomethine complexes with the coordination nodes MN2O2, MN2S2, and MN2Se2 is shown to be determined by both the energy preference of one of possible configurations and activation barriers of the isomerization of the products formed in the first step of the interaction of the initial reagents.
Full Text
 
												
	                        About the authors
N. N. Kharabayev
Research Institute of Physical and Organic Chemistry, Southern Federal University
							Author for correspondence.
							Email: nkharabaev@mail.ru
				                					                																			                												                	Russian Federation, 							Rostov-on-Don						
D. V. Steglenko
Research Institute of Physical and Organic Chemistry, Southern Federal University
														Email: nkharabaev@mail.ru
				                					                																			                												                	Russian Federation, 							Rostov-on-Don						
V. I. Minkin
Research Institute of Physical and Organic Chemistry, Southern Federal University
														Email: nkharabaev@mail.ru
				                					                																			                												                	Russian Federation, 							Rostov-on-Don						
References
- Garnovskii A.D., Nivorozhkin A.L., Minkin V.I. // Coord. Chem. Rev. 1993. V. 126. № 1. P. 1.
- Bourget-Merle. L., Lappert M.F., Severn J.R. // Chem. Rev. 2002. V. 102. № 6. P. 3031.
- Garnovskii A.D., Vasilchenko I.S., Garnovskii D.A., Kharisov B.I. // J. Coord. Chem. 2009. V. 62. № 2. P. 151.
- Kharabaev N.N., Starikov A.G., Minkin V.I. // Dokl. Chem. 2014. V. 458. P. 181.
- Kharabayev N.N., Starikov A.G., Minkin V.I. // J. Struct. Chem. 2016. V. 57. № 3. P. 431.
- Kharabayev N.N., Minkin V.I. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 765. https://doi.org/10.1134/S1070328422700117.
- Faghih Z., Neshat A., Wojtczak A. et al. // Inorg. Chim. Acta. 2018. V. 471. P. 404.
- Tshabalala T., Ojwach S. // J. Organomet. Chem. 2018. V. 873. P. 35.
- Firinci R., Firinci E., Basbulbul G. et al. // Transition Met. Chem. 2019. V. 44. P. 391.
- Sarto L.E., Badaro W.P.D., de Gois E.P. et al. // J. Mol. Struct. 2020. V. 1204. P. 127549.
- Komiya N., Okada M., Fukumoto K. et al. // J. Am. Chem. Soc. 2011. V. 133. P. 6493.
- Patterson A.E., Miller J.J., Miles B.A. et al. // Inorg. Chim. Acta. 2014. V. 415. P. 88
- Hashimoto T., Fukumoto K., Le N.H.-T. et al. // Dalton Trans. 2016. V. 45. P. 19257.
- Iwata S., Takahashi H., Ihara A. et al.// Transition Met. Chem. 2018. V. 43. P. 115.
- Martin E.M., Bereman R.D., Reibenspies J. // Inorg. Chim. Acta.1992. V.191. P. 171.
- Antsyshkina A.S., Porai-Koshits M.A., Vasil’chenko I.S. et al. // Proc. Nat. Acad. Sci. USSR. 1993. V. 330. P. 54.
- Orysyk S.I., Bon V.V., Pekhnyo V.I. // Acta Crystallogr. E. 2009. V. 65. m 1059.
- Orysyk S.I., Bon V.V., Pekhnyo V.I., et al. // Polyhedron. 2012. V. 38. P. 15.
- Al-Jibori S.A., Dayaaf N.A., Mohammed M.Y., et al. // J. Chem. Cryst. 2013. V.43. P. 365.
- Dutta P.K., Panda S., Zade S.S. // Inorg. Cnim. Acta. 2014. V. 411. P. 83.
- Kharabaev N.N., Kogan V.A., Osipov O.A. // Zh. Strukt. Khim. 1979. V. 20. № 1. P. 133.
- Kharabayev N.N. // Russ. J. Coord. Chem. 2017. Vol. 43. № 12. P. 807. https://doi.org/10.1134/S107032841712003X
- Kharabayev N.N. // Russ. J. Coord. Chem. 2019. V. 45. № 8. P. 573. https://doi.org/10.1134/S1070328419080050
- Parr R., Yang W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989. 333 p.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford CT, Gaussian, Inc., 2013.
- Sousa S.F., Fernandes P.A., Ramos M.J. //J. Phys. Chem. A. 2007. V. 111. № 42. Р. 10439.
- Burke K., Wagner L.O. // Int. J. Quantum Chem. 2013. V. 113. № 2. P. 96.
- Tsipis A.C. // Coord. Chem. Rev. 2014. V. 272. P. 1.
- Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
- Perdew J. P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
- Tao J., Perdew J.P., Staroverov V.N., Scuseria G.E. // Phys. Rev. Lett. 2003. V. 91. P. 146401.
- Zhurko G.A., Zhurko D.A. Chemcraft. Version 1.6. http://www.chemcraftprog.com
- Kharabaev N.N. // Koord. Khim. 1991. V. 17. № 5. P. 579.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted



