Dynamics of Storage Lipids during the Recovery of Partially Bleached Coral Sinularia heterospiculata
- Autores: Sikorskaya T.V.1, Solodiy D.D.1,2, Maskin E.V.1,2
- 
							Afiliações: 
							- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
- Far Eastern Federal University, Department of Biochemistry and Biotechnology
 
- Edição: Volume 49, Nº 5 (2023)
- Páginas: 488-493
- Seção: Articles
- URL: https://rjeid.com/0132-3423/article/view/670560
- DOI: https://doi.org/10.31857/S0132342323050068
- EDN: https://elibrary.ru/AQFLLS
- ID: 670560
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Global warming is causing the loss of coral symbionts and their bleaching. Researches of coral recovery are very important for the conservation of coral reefs. The lipidomic approach can provide detailed information about the processes that take place in the coral during bleaching and recovery. Using supercritical fluid chromatography in combination with mass-spectrometry, the dynamics of the main classes of storage lipids triacylglycerols (TG) and monoalkyldiacylglycerols (MADAG) during the recovery of the octocoral Sinularia heterospiculata after heat stress (32°C). It was shown that MADAG plays an important role in the energy balance of S. heterospiculata after heat stress. Under stress, the coral S. heterospiculata primarily consumed saturated MADAG molecular species. Changes in the profile of TG molecular species occurred only on the 16th day of the experiment. Probable, the stressed octocoral S. heterospiculata changes its energy strategy during recovery; therefore, the qualitative composition of reserve lipids is rearranged during the recovery period.
Palavras-chave
Sobre autores
T. Sikorskaya
Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
														Email: miss.tatyanna@yandex.ru
				                					                																			                												                								Russia, 690041, Vladivostok, ul. Palchevskogo 17						
D. Solodiy
Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University, Department of Biochemistry and Biotechnology
														Email: miss.tatyanna@yandex.ru
				                					                																			                												                								Russia, 690041, Vladivostok, ul. Palchevskogo 17; Russia, 690922, Vladivostok, Ajaks 10						
E. Maskin
Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences; Far Eastern Federal University, Department of Biochemistry and Biotechnology
														Email: miss.tatyanna@yandex.ru
				                					                																			                												                								Russia, 690041, Vladivostok, ul. Palchevskogo 17; Russia, 690922, Vladivostok, Ajaks 10						
Bibliografia
- Spalding M.D., Grenfell A.M. // Coral Reefs. 1997. V. 16. P. 225–230. https://doi.org/10.1007/s003380050078
- Fabricius K., Alderslade P. // Soft Corals and Sea Fans: a Comprehensive Guide to the Tropical Shallow Water Genera of the Central-West Pacific, the Indian Ocean and the Red Sea. Townsville, Australia: Australian Institute of Marine Science, 2001. P. 77–103.
- Rowley S.J., Robert T.E., Coleman R.R., Spalding H.L., Joseph E., Dorricott M.K.L. // Pohnpei, Federated States of Micronesia. In: Mesophotic Coral Ecosystems / Eds. Loya Y., Puglise K.A., Bridge T.C.L. Springer International Publishing, Cham, 2019. V. 12. P. 301–320. https://doi.org/10.1007/978-3-319-92735-0_17
- McLachlan R.H., Price J.T., Solomon S.L., Grottoli A.G. // Coral Reefs. 2020. V. 39. P. 885–902. https://doi.org/10.1007/s00338-020-01931-9
- Oliver T.A., Palumbi S.R. // Coral Reefs. 2011. V. 30. P. 429–440. https://doi.org/10.1007/s00338-011-0721-y
- Yamashiro H., Oku H., Higa H., Chinen I., Sakai K. // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999. V. 122. P. 397–407. https://doi.org/10.1016/S0305-0491%2899%2900014-0
- Imbs A.B., Dang L.P.T., Nguyen K.B. // PLoS One. 2019. V. 14. e0215759. https://doi.org/10.1371/journal.pone.0215759
- Hamoutene D., Puestow T., Miller-Banoub J., Wareham V. // Coral Reefs. 2008. V. 27. P. 237–246. https://doi.org/10.1007/s00338-007-0318-7
- Imbs A.B., Ermolenko E.V., Grigorchuk V.P., Dang L.T.P. // Coral Reefs. 2021. V. 40. P. 719–734. https://doi.org/10.1007/s00338-021-02073-2
- Sikorskaya T.V., Ermolenko E.V., Efimova K.V. // Coral Reefs. 2022. V. 41. P. 277–291. https://doi.org/10.1007/s00338-022-02222-1
- Imbs A.B. // Russ. J. Mar. Biol. 2013. V. 39. P. 153–168. https://doi.org/10.1134/s1063074013030061
- Yamashiro H., Oku H., Onaga K. // Fisheries Science. 2005. V. 71. P. 448–453. https://doi.org/10.1111/j.1444-2906.2005.00983.x
- Sikorskaya T.V., Ermolenko E.V., Imb, A.B. // J. Exp. Mar. Biol. Ecol. 2020. V. 524. 151295. https://doi.org/10.1016/j.jembe.2019.151295
- Imbs A.B. // Biochem. Syst. Ecol. 2014. V. 54. P. 213–218. https://doi.org/10.1016/j.bse.2014.01.016
- Imbs A.B., Latyshev N.A., Dautova T.N., Latypov Y.Y. // Mar. Ecol. Prog. Ser. 2010. V. 409. P. 65–75. https://doi.org/10.3354/meps08622
- Imbs A.B., Yakovleva I.M., Pham L.Q. // Fisheries Science. 2010. V. 76. P. 375–380. https://doi.org/10.1007/s12562-009-0213-y
- Joseph J.D. // Prog. Lipid Res. 1979. V. 18. P. 1–30. https://doi.org/10.1016/0163-7827(79)90002-X
- Sikorskaya T.V., Ermolenko E.V., Boroda A.V., Ginanova T.T. // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2021. V. 255. P. 110609. https://doi.org/10.1016/j.cbpb.2021.110609
- Grottoli A.G., Warner M.E., Levas S.J., Aschaffenburg M.D., Schoepf V., McGinley M., Baumann J., Matsui Y. // Global Change Biology. 2014. V. 20. P. 3823–3833. https://doi.org/10.1111/gcb.12658
- Folch J., Lees M., Sloane-Stanley G.A. // J. Biol. Chem. 1957. V. 226. P. 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
- Byrdwell W.C. // Lipids. 2005. V. 40. P. 383–417. https://doi.org/10.1007/s11745-006-1398-9
- Sikorskaya T.V., Efimova K.V., Imbs A.B. // Phytochemistry. 2021. V. 181. 112579. https://doi.org/10.1016/j.phytochem.2020.112579
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 

