Pharmacokinetic Features of Ecdystene and Ursolic Acid in Plant Extracts After Oral Administration In Vivo

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The determination of bioavailability during the study of the therapeutic potential of plant extracts is extremely important because it serves as an indicator of whether the original compounds will retain their biological activity or gradually lose it under the influence of multiple factors. Rosemary (Rosmarinus officinalis L.) is the source with the highest percentage of the pentacyclic triterpenoid ursolic acid, while ecdystene (20-hydroxyecdysterone) is one of the main phytoecdysteroids present in leuzea (Rhaponicum carthamoides Willd.). Both plant sources are distributed on the pharmaceutical market in the form of food and dietary supplements as metabolic therapy agents. However, there is still little information on the pharmacokinetic profile of ecdystene and ursolic acid in extracts and multicomponent compositions. In this paper, we carried out a comparative evaluation of pharmacokinetic parameters of ecdystene, ursolic acid, extracts of leuzea and rosemary, composition based on the two extracts in blood during per os administration in vivo. Methods: The investigated substances and their extracts were administered once, intragastrically to CD-1 outbred mice in doses equivalent in quantitative content of the main active substance. The content of ursolic acid and ecdystene in animal blood was determined by HPLC-MS/MS for subsequent calculation of pharmacokinetic parameters (Cmax, Tmax, AUC). Results: In both cases there was a decrease in bioavailability of ursolic acid and ecdystene in the blood of experimental animals in comparison with individual substances. In the composition, only trace amounts of ecdystene were determined, while no differences in pharmacokinetic parameters of ursolic acid in the composition and rosemary extract were found. Conclusions: This study proves that the combination of plant extracts in the form of multicomponent mixtures can lead to a decrease in bioavailability of the main active substances by many different factors. The development of products based on plant extracts should be accompanied by pharmacokinetic studies to prove the quality of the finished product.

作者简介

D. Kiseleva

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS

Email: dasha.halikova@mail.ru
Russia, Novosibirsk

S. An'kov

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS

Russia, Novosibirsk

T. Tolstikova

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS

Russia, Novosibirsk

A. Okhina

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk State University

Russia, Novosibirsk; Russia, Novosibirsk

A. Rogachev

N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk State University

Russia, Novosibirsk; Russia, Novosibirsk

参考

  1. Физуллия О.Ф., Льновина М.Н. // Ползунововский вестник. 2018. № 4. С. 89–94. https://doi.org/10.25712/ASTU.2072-8921.2018.04.018
  2. Dima C., Assadpour E., Dima S., Jafari S.M. // Compr. Rev. Food Sci. Food Saf. 2020. V. 19. P. 954–994. https://doi.org/10.1111/1541-4337.12547
  3. Thakur N., Raigond P., Singh Y., Mishra T., Singh B., Lal M.K., Dutt S. // Trends Food Sci. Technol. 2020. V. 97. P. 366–380. https://doi.org/10.1016/j.tifs.2020.01.019
  4. Liu Y., Xia H., Guo S., Li P., Qin S., Shi M., Zeng C. // Food Chem. 2023. V. 423. P. 136220. https://doi.org/10.1016/j.foodchem.2023.136220
  5. Kunkel S.D., Suneja M., Ebert S.M., Bongers K.S., Fox D.K., Malmberg S.E., Alipour F., Shields R.K., Adams C.M. // Cell Metab. 2011. V. 13. P. 627–638. https://doi.org/10.1016/j.cmet.2011.03.020
  6. Rai S.N., Yadav S.K., Singh D., Singh S.P. // J. Chem. Neuroanat. 2016. V. 71. P. 41–49. https://doi.org/10.1016/j.jchemneu.2015.12.002
  7. Wang L., Wang G.L., Liu J.H., Li D., Zhu D.Z., Wu L.N. // Chin. J. Integr. Med. 2012. V. 10. P. 793–799. https://doi.org/10.3736/jcim20120710
  8. Liu Y., Zheng J.Y., Wei Z.T., Liu S.K., Sun J.L., Mao Y.H., Xu Y.D., Yang Y. // Front. Pharmacol. 2022. V. 13. P. 969207. https://doi.org/10.3389/fphar.2022.969207
  9. Kornel A., Nadlie M., Reisidou M.I., Sakellakis M., Giori K., Beloukas A., Sze N.S.K., Klentrou P., Tsiani E. // Int. J. Mol. Sci. 2023. V. 24. P. 7414. https://doi.org/10.3390/ijms24087414
  10. Chan E.W.C., Soon C.Y., Tan J.B.L., Wong S.K., Hui Y.W. // J. Integr. Med. 2019. V. 17. P. 155–160. https://doi.org/10.1016/j.joim.2019.03.003
  11. Wozniak L., Szakiel A., Glowacka A., Rozpara E., Marszalek K., Skapska S. // Molecules. 2023. V. 28. P. 2584. https://doi.org/10.3390/molecules28062584
  12. Jager S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A. // Molecules. 2009. V. 14. P. 2016–2031. https://doi.org/10.3390/molecules14062016
  13. Todorova V., Ivanova S., Chakarov D., Kraev K., Ivanov K. // Nutrients. 2024. V. 16. P. 1382. https://doi.org/10.3390/nu16091382
  14. Budesinsky M., Vokác K., Harmatha J., Cvacka J. // Steroids. 2008. V. 73. P. 502–514. https://doi.org/10.1016/j.steroids.2007.12.021
  15. Cheng D.M., Kutzler L.W., Boler D.D., Drnevich J., Killefer J., Lila M.A. // Phytother. Res. 2013. V. 27. P. 107–111. https://doi.org/10.1002/ptr.4679
  16. Kokoska L., Janovska D. // Phytochemistry. 2009. V. 70. P. 842–855. https://doi.org/10.1016/j.phytochem.2009.04.008
  17. Ambrosio G., Joseph J.F., Wuest B., Mazzarino M., de la Torre X., Diel P., Boiré F., Parr M.K. // Steroids. 2020. V. 157. P. 108603. https://doi.org/10.1016/j.steroids.2020.108603
  18. Dioh W., Tourette C., Del Signore S., Daudigny L., Dupont P., Balducci C., Dilda P.J., Lafont R., Veillet S. // J. Cachexia Sarcopenia Muscle. 2023. V. 14. P. 1259–1273. https://doi.org/10.1002/jcsm.13195
  19. Kraiem S., Al-Jaber M.Y., Al-Mohammed H., Al-Menhali A.S., Al-Thani N., Helaleh M., Samsam W., Touil S., Beotra A., Georgakopoulas C., Bouabdallah S., Mohamed-Ali Y., Al Maadheed M. // Drug Test Anal. 2021. V. 113. P. 1341–1353. https://doi.org/10.1002/dta.3032
  20. Wang X.H., Zhou S.Y., Qian Z.Z., Zhang H.L., Qiu L.H., Song Z., Zhao J., Wang P., Hao X.S., Wang H.Q. // Expert Opin. Drug Metab. Toxicol. 2013. V. 9. P. 117–125. https://doi.org/10.1517/17425255.2013.738667
  21. Zhu Z., Qian Z., Yan Z., Zhao C., Wang H., Ying G. // Int. J. Nanomedicine. 2013. V. 8. P. 129–136. https://doi.org/10.2147/IJN.S38271
  22. Qian Z., Wang X., Song Z., Zhang H., Zhou S., Zhao J., Wang H. // Biomed. Res. Int. 2015. V. 2015. P. 809714. https://doi.org/10.1155/2015/809714
  23. Chen Q., Luo S., Zhang Y., Chen Z. // Anal. Bioanal. Chem. 2011. V. 399. P. 2877–2884. https://doi.org/10.1007/s00216-011-4651-x
  24. Zhang C., Wang C., Li W., Wu R., Guo Y., Cheng D., Yang Y., Androulakis I.P., Kong A.N. // Mol. Pharm. 2017. V. 14. P. 3709–3717. https://doi.org/10.1021/acs.molpharmaceut.7b00469
  25. Younige A.B., Ихалайнен А.А., Максимов В.А. // Фармакология. 2014. № 15. С. 250–262.
  26. Lafont R., Dilda P., Dupont P., Signore S.D., Veillet S. // Patent FR 3065644 A1, 2020.
  27. Namdeo P., Gidwani B., Tiwari S., Jain V., Joshi V., Shukla S.S., Pandey R.K., Vyss A. // J. Sci. Food Agric. 2023. V. 103. P. 4275–4292. https://doi.org/10.1002/jsfa.12423
  28. Epимбенов К.Т., Федорова А.В., Гончарова А.Я., Бондаренко Е.В. // Проблемы биологии продуктивных животных. 2020. № 3. С. 106–113. https://doi.org/10.25687/1996-6733.prodanimbiol.2020.3.106-113
  29. Dinan L., Balducci C., Guibout L., Foucault A.S., Bakrim A., Kumpun S., Girault J.P., Tourette C., Dioh W., Dilda P.J., Veillet S., Lafont R. // J. Steroid Biochem. Mol. Biol. 2021. V. 212. P. 105896. https://doi.org/10.1016/j.jsbmb.2021.105896
  30. Tai M.M. // Diabetes Care. 1994. V. 17. P. 152–154. https://doi.org/10.2337/diacare.17.2.152

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025