Biotechnological Production of the Recombinant Two-Component Lantibiotic Lichenicidin in the Bacterial Expression System
- Autores: Antoshina D.V.1, Balandin S.V.1,2, Tagaev A.A.1, Potemkina A.A.1,2, Ovchinnikova T.V.1,2
- 
							Afiliações: 
							- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
 
- Edição: Volume 50, Nº 4 (2024)
- Páginas: 485-497
- Seção: Articles
- URL: https://rjeid.com/0132-3423/article/view/670845
- DOI: https://doi.org/10.31857/S0132342324040081
- EDN: https://elibrary.ru/MWYNGK
- ID: 670845
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Lantibiotics are a family of bacterial antimicrobial peptides synthesized by ribosomes that undergo post-translational modification to form lanthionine (Lan) and methyllanthionine (MeLan) residues. Lantibiotics are considered promising agents for combating antibiotic-resistant bacterial infections. This paper presents a biotechnological method for obtaining two components of the lantibiotic lichenicidin from Bacillus licheniformis B-511 – Lchα and Lchβ. A system has been developed that allows co-expression of the lchA1 or lchA2 genes, encoding the precursors of the α- or β-components, respectively, with the lchM1 or lchM2 genes of the modifying enzymes LchM1 and LchM2 in Escherichia coli cells. The developed system of heterologous expression and purification made it possible to obtain, with high yield, post-translationally modified recombinant Lchβ, completely identical to the natural peptide in structure and biological activity.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
D. Antoshina
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences
														Email: ovch@ibch.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
S. Balandin
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
														Email: ovch@ibch.ru
				                					                																			                								
Phystech School of Biological and Medical Physics
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Institutskiy per. 9, Dolgoprudny, 141700A. Tagaev
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences
														Email: ovch@ibch.ru
				                					                																			                												                	Rússia, 							ul. Miklukho-Maklaya 16/10, Moscow, 117997						
A. Potemkina
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
														Email: ovch@ibch.ru
				                					                																			                								
Phystech School of Biological and Medical Physics
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Institutskiy per. 9, Dolgoprudny, 141700T. Ovchinnikova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
							Autor responsável pela correspondência
							Email: ovch@ibch.ru
				                					                																			                								
Phystech School of Biological and Medical Physics
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Institutskiy per. 9, Dolgoprudny, 141700Bibliografia
- Drider D., Rebuffat S. Prokaryotic Antimicrobial Peptides. From Genes to Applications / Springer. 2011. P. 1–451.
- Antoshina D.V., Balandin S.V., Ovchinnikova T.V. // Biochemistry (Moscow). 2022. V. 87. P. 1387–1403. https://doi.org/10.1134/S0006297922110165
- Zimina M., Babich O., Prosekov A., Sukhikh S., Ivanova S., Shevchenko M., Noskova S. // Antibiotics (Basel). 2020. V. 9. P. 553–574. https://doi.org/10.3390/antibiotics9090553
- Field D., Cotter P.D., Hill C., Ross R.P. // Front. Microbiol. 2015. V. 6. P. 1–8. https://doi.org/10.3389/fmicb.2015.01363
- Repka L.M., Chekan J.R., Nair S.K., van der Donk W.A. // Chem. Rev. 2017. V. 11. P. 5457–5520. https://doi.org/10.1021/acs.chemrev.6b00591
- Ryan M.P., Rea M.C., Hill C., Ross R.P. // Appl. Environ. Microbiol. 1996. V. 62. P. 612–619. https://doi.org/10.1128/aem.62.2.612-619.1996
- Navaratna M.A., Sahl H.G., Tagg J.R. // Infect. Immun. 1999. V. 67. P. 4268–4271. https://doi.org/10.1128/iai.67.8.4268-4271.1999
- Holo H., Jeknic Z., Daeschel M., Stevanovic S., Nes I.F. // Microbiology (Reading). 2001. V. 147. P. 643–651. https://doi.org/10.1099/00221287-147-3-643
- Hyink O., Balakrishnan M., Tagg J.R. // FEMS Microbiol. Lett. 2005. V. 252. P. 235–241. https://doi.org/10.1016/j.femsle.2005.09.003
- Yonezawa H., Kuramitsu H.K. // Antimicrob. Agents Chemother. 2005. V. 49. P. 541–548. https://doi.org/10.1128%2FAAC.49.2.541-548.2005
- Begley M., Cotter P.D., Hill C., Ross R.P. // Appl. Environ. Microbiol. 2009. V. 75. P. 5451–5460. https://doi.org/10.1128/aem.00730-09
- Shenkarev Z.O., Finkina E.I., Nurmukhamedova E.K., Balandin S.V., Mineev K.S., Nadezhdin K.D., Yakimenko Z.A., Tagaev A.A., Temirov Y.V., Arseniev A.S., Ovchinnikova T.V. // Biochem. 2010. V. 49. P. 6462– 6472. https://doi.org/10.1021/bi100871b
- Barbosa J.C., Gonçalves S., Makowski M., Silva Í.C., Caetano T., Schneider T., Mösker E., Süssmuth R.D., Santos N.C., Mendo S. // Coll. Surf. B Biointerfaces. 2022. V. 211. P. 1–11. https://doi.org/10.1016/j.colsurfb.2021.112308
- Panina I.S., Balandin S.V., Tsarev A.V., Chugunov A.O., Tagaev A.A., Finkina E.I., Antoshina D.V., Sheremeteva E.V., Paramonov A.S., Rickmeyer J., Bierbaum G., Efremov R.G., Shenkarev Z.O., Ovchinnikova T.V. // Int. J. Mol. Sci. 2023. V. 24. P. 1332. https://doi.org/10.3390/ijms24021332
- McClerren A.L., Cooper L.E., Quan C., Thomas P.M., Kelleher N.L., van der Donk W.A. // Proc. Natl. Acad. Sci USA. 2006. V. 103. P. 17243–17248. https://doi.org/10.1073/pnas.0606088103
- Sawa N., Wilaipun P., Kinoshita S., Zendo T., Leelawatcharamas V., Nakayama J., Sonomoto K. // Appl. Environ. Microbiol. 2012. V. 78. P. 900–903. https://doi.org/10.1128/aem.06497-11
- Zhao X., van der Donk W.A. // Cell Chem. Biol. 2016. V. 23. P. 246–256. https://doi.org/10.1016/j.chembiol.2015.11.014
- Huo L., van der Donk W.A. // J. Am. Chem. Soc. 2016. V. 138. P. 5254–5257. https://doi.org/10.1021/jacs.6b02513
- Xin B., Zheng J., Liu H., Li J., Ruan L., Peng D., Sajid M., Sun M. // Front Microbiol. 2016. V. 7. P. 1–12. https://doi.org/10.3389/fmicb.2016.01115
- Collins F.W.J., O’Connor P.M., O’Sullivan O., Rea M.C., Hill C., Ross R.P. // Microbiology (Reading). 2016. V. 162. P. 1662–1671. https://doi.org/10.1099/mic.0.000340
- Singh M., Chaudhary S., Sareen D. // Mol. Microbiol. 2020. V. 113. P. 326–337. https://doi.org/10.1111/mmi.14419
- Caetano T., Krawczyk J.M., Mösker E., Süssmuth R.D., Mendo S. // Chem. Biol. 2011. V. 18. P. 90–100. https://doi.org/10.1016/j.chembiol.2010.11.010
- Caetano T., Barbosa J., Möesker E., Süssmuth R.D., Mendo S. // Res Microbiol. 2014. V. 165. P. 600–604. https://doi.org/10.1016/j.resmic.2014.07.006
- Jones D.H., Howard B.H. // BioTechniques. 1991. V. 10. P. 62–66.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






