The Role of RIG-I-Like Receptors in the Activation of Innate Immune in Tuberculosis
- Authors: Skvortsova Y.V.1, Bychenko O.S.1, Azhikina T.L.1
- 
							Affiliations: 
							- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS
 
- Issue: Vol 49, No 4 (2023)
- Pages: 360-368
- Section: Articles
- URL: https://rjeid.com/0132-3423/article/view/670578
- DOI: https://doi.org/10.31857/S0132342323040413
- EDN: https://elibrary.ru/OECZCE
- ID: 670578
Cite item
Abstract
Tuberculosis still claims over a million lives every year. The infection process can be regarded as an imbalance between the immune response and Mycobacterium tuberculosis growth. To successfully survive in an infected organism, M. tuberculosis must overcome the mechanisms of innate immunity, including those aimed at recognition of pathogen nucleic acids. RIG-I-like receptors (RLRs) is a system of intracellular sensors of foreign RNA, which is involved in the recognition of viruses and bacterial pathogens. RIG-I, MDA5, and LGP2 receptors interact directly with RNA in the cell cytoplasm and trigger a cascade of interactions leading to the synthesis of type I interferons and pro-inflammatory cytokines. To date, it has been proven that RLR activation during tuberculosis is among the most important components of innate immunity. Their role in the activation of type I interferons is undoubted, however, can be not only protective, but also detrimental. The review considers the latest data on the RLRs functioning in M. tuberculosis infection.
About the authors
Y. V. Skvortsova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS
							Author for correspondence.
							Email: ju.skvortsova@gmail.com
				                					                																			                												                								Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10						
O. S. Bychenko
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS
														Email: ju.skvortsova@gmail.com
				                					                																			                												                								Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10						
T. L. Azhikina
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS
														Email: ju.skvortsova@gmail.com
				                					                																			                												                								Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10						
References
- Yamashiro L.H., Oliveira S.C., Báfica A. // Microbes Infect. 2014. V. 16. P. 991–997. https://doi.org/10.1016/j.micinf.2014.09.006
- Batool M., Kim M.S., Choi S. // Med. Res. Rev. 2022. V. 42. P. 399–425. https://doi.org/10.1002/med.21845
- Chattopadhyay S., Sen G.C. // J. Interferon Cytokine Res. 2014. V. 34. P. 427– 436. https://doi.org/10.1089/jir.2014.0034
- Liu H.M. // IUBMB Life. 2021. V. 74. P. 180–189. https://doi.org/10.1002/iub.2551
- Meylan E., Tschopp J., Karin M. // Nature. 2006. V. 442. P. 39–44. https://doi.org/10.1038/nature04946
- Martínez I., Oliveros J.C., Cuesta I., de la Barrera J., Ausina V., Casals C., de Lorenzo A., García E., García-Fojeda B., Garmendia J. // Front. Microbiol. 2017. V. 8. P. 276. https://doi.org/10.3389/fmicb.2017.00276
- Platnich J.M., Muruve D.A. // Arch. Biochem. Biophys. 2019. V. 670. P. 4–14. https://doi.org/10.1016/j.abb.2019.02.008
- Semple S.L., Vo N.T., Poynter S.J., Li M., Heath D.D., DeWitte-Orr S.J., Dixon B. // Dev. Comp. Immunol. 2018. V. 89. P. 93–101. https://doi.org/10.1016/j.dci.2018.08.010
- Mehrbod P., Ande S.R., Alizadeh J., Rahimizadeh S., Shariati A., Malek H., Hashemi M., Glover K.K., Sher A.A., Coombs K.M. // Virulence. 2019. V. 10. P. 376–413. https://doi.org/10.1080/21505594.2019.1605803
- Bruns A.M., Pollpeter D., Hadizadeh N., Myong S., Marko J.F., Horvath C.M. // J. Biol. Chem. 2013. V. 288. P. 938–946. https://doi.org/10.1074/jbc.M112.424416
- Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., Yamaguchi O., Otsu K., Tsujimura T., Koh C.S., Reis e Sousa C., Matsuura Y., Fujita T., Akira S. // Nature. 2006. V. 441. P. 101–105. https://doi.org/nature04734
- Loo Y.M., Fornek J., Crochet N., Bajwa G., Perwitasari O., Martinez-Sobrido L., Akira S., Gill M.A., Garcia-Sastre A., Katze M.G., Gale M., Jr. // J. Virol. 2008. V. 82. P. 335–345. https://doi.org/JVI.01080-07
- Goubau D., Schlee M., Deddouche S., Pruijssers A.J., Zillinger T., Goldeck M., Schuberth C., Van der Veen A.G., Fujimura T., Rehwinkel J., Iskarpatyoti J.A., Barchet W., Ludwig J., Dermody T.S., Hartmann G., Reis e Sousa C. // Nature. 2014. V. 514. P. 372–375. https://doi.org/10.1038/nature13590
- Kowalinski E., Lunardi T., McCarthy A.A., Louber J., Brunel J., Grigorov B., Gerlier D., Cusack S. // Cell. 2011. V. 147. P. 423–435. https://doi.org/10.1016/j.cell.2011.09.039
- Chiu Y.H., Macmillan J.B., Chen Z.J. // Cell. 2009. V. 138. P. 576–591. https://doi.org/10.1016/j.cell.2009.06.015
- Malathi K., Dong B., Gale M., Jr., Silverman R.H. // Nature. 2007. V. 448. P. 816–819. https://doi.org/nature06042
- Schlee M. // Immunobiology. 2013. V. 218. P. 1322–1335. https://doi.org/10.1016/j.imbio.2013.06.007
- Zust R., Cervantes-Barragan L., Habjan M., Maier R., Neuman B.W., Ziebuhr J., Szretter K.J., Baker S.C., Barchet W., Diamond M.S., Siddell S.G., Ludewig B., Thiel V. // Nat. Immunol. 2011. V. 12. P. 137–143. https://doi.org/10.1038/ni.1979
- Linehan M.M., Dickey T.H., Molinari E.S., Fitzgerald M.E., Potapova O., Iwasaki A., Pyle A.M. // Sci. Adv. 2018. V. 4. P. e1701854. https://doi.org//10.1126/sciadv.1701854
- Ren X., Linehan M.M., Iwasaki A., Pyle A.M. // Cell Rep. 2019. V. 26. P. 2019–2027. https://doi.org/10.1016/j.celreP.2019.01.107
- Peisley A., Wu B., Yao H., Walz T., Hur S. // Mol. Cell. 2013. V. 51. P. 573–583. https://doi.org/10.1016/j.molcel.2013.07.024
- Peisley A., Wu B., Xu H., Chen Z.J., Hur S. // Nature. 2014. V. 509. P. 110–114. https://doi.org/10.1038/nature13140
- Pichlmair A., Schulz O., Tan C.P., Rehwinkel J., Kato H., Takeuchi O., Akira S., Way M., Schiavo G., Reis e Sousa C. // J. Virol. 2009. V. 83. P. 10761–10769. https://doi.org/10.1128/JVI.00770-09
- Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T.S., Fujita T., Akira S. // J. Exp. Med. 2008. V. 205. P. 1601–1610. https://doi.org/10.1084/jem.20080091
- Berke I.C., Modis Y. // EMBO J. 2012. V. 31. P. 1714–1726. https://doi.org/10.1038/emboj.2012.19
- Peisley A., Lin C., Wu B., Orme-Johnson M., Liu M., Walz T., Hur S. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 21010–21015. https://doi.org/10.1073/pnas.1113651108
- Wu B., Peisley A., Richards C., Yao H., Zeng X., Lin C., Chu F., Walz T., Hur S. // Cell. 2013. V. 152. P. 276–289. https://doi.org/10.1016/j.cell.2012.11.048
- Huang Y.H., Liu X.Y., Du X.X., Jiang Z.F., Su X.D. // Nat. Struct. Mol. Biol. 2012. V. 19. P. 728–730. https://doi.org/10.1038/nsmb.2333
- Manivannan P., Siddiqui M.A., Malathi K. // J. Virol. 2020. V. 94. P. e00205-20. https://doi.org/10.1128/JVI.00205-20
- Luthra P., Sun D., Silverman R.H., He B. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 2118–2123. https://doi.org/10.1073/pnas.1012409108
- Chiang J.J., Davis M.E., Gack M.U. // Cytokine Growth Factor Rev. 2014. V. 25. P. 491–505. https://doi.org/10.1016/j.cytogfr.2014.06.005
- Hou F., Sun L., Zheng H., Skaug B., Jiang Q.X., Chen Z.J. // Cell. 2011. V. 146. P. 448–461. https://doi.org/10.1016/j.cell.2011.06.041
- Liu Y., Olagnier D., Lin R. // Front. Immunol. 2016. V. 7. P. 662. https://doi.org/10.3389/fimmu.2016.00662
- Panne D. // Curr. Opin. Struct. Biol. 2008. V. 18. P. 236–242. https://doi.org/10.1016/j.sbi.2007.12.002
- Monroe K.M., McWhirter S.M., Vance R.E. // PLoS Pathog. 2009. V. 5. P. e1000665. https://doi.org/10.1371/journal.ppat.1000665
- Abdullah Z., Schlee M., Roth S., Mraheil M.A., Barchet W., Bottcher J., Hain T., Geiger S., Hayakawa Y., Fritz J.H., Civril F., Hopfner K.P., Kurts C., Ruland J., Hartmann G., Chakraborty T., Knolle P.A. // EMBO J. 2012. V. 31. P. 4153–4164. https://doi.org/10.1038/emboj.2012.274
- Rad R., Ballhorn W., Voland P., Eisenacher K., Mages J., Rad L., Ferstl R., Lang R., Wagner H., Schmid R.M., Bauer S., Prinz C., Kirschning C.J., Krug A. // Gastroenterology. 2009. V. 136. P. 2247–2257. https://doi.org/10.1053/j.gastro.2009.02.066
- Manzanillo P.S., Shiloh M.U., Portnoy D.A., Cox J.S. // Cell Host Microbe. 2012. V. 11. P. 469–480. https://doi.org/10.1016/j.chom.2012.03.007
- Andreu N., Phelan J., de Sessions P.F., Cliff J.M., Clark T.G., Hibberd M.L. // Sci. Rep. 2017. V. 7. P. 42225. https://doi.org/10.1038/srep42225
- Ranjbar S., Haridas V., Nambu A., Jasenosky L.D., Sadhukhan S., Ebert T.S., Hornung V., Cassell G.H., Falvo J.V., Goldfeld A.E. // iScience. 2019. V. 22. P. 299–313. https://doi.org/10.1016/j.isci.2019.11.001
- Ivashkiv L.B., Donlin L.T. // Nat. Rev. Immunol. 2014. V. 14. P. 36–49. https://doi.org/10.1038/nri3581
- Hertzog P.J., Williams B.R. // Cytokine Growth Factor Rev. 2013. V. 24. P. 217–225. https://doi.org/10.1016/j.cytogfr.2013.04.002
- Crouse J., Kalinke U., Oxenius A. // Nat. Rev. Immunol. 2015. V. 15. P. 231–242. https://doi.org/10.1038/nri3806
- Qiu H., Fan Y., Joyee A.G., Wang S., Han X., Bai H., Jiao L., Van Rooijen N., Yang X. // J. Immunol. 2008. V. 181. P. 2092–2102. https://doi.org/10.4049/jimmunol.181.3.2092
- Auerbuch V., Brockstedt D.G., Meyer-Morse N., O’Riordan M., Portnoy D.A. // J. Exp. Med. 2004. V. 200. P. 527–533. https://doi.org/10.1084/jem.20040976
- Opitz B., Vinzing M., van Laak V., Schmeck B., Heine G., Gunther S., Preissner R., Slevogt H., N’Guessan P.D., Eitel J., Goldmann T., Flieger A., Suttorp N., Hippenstiel S. // J. Biol. Chem. 2006. V. 281. P. 36173–36179. https://doi.org/10.1074/jbc.M604638200
- Robinson N., McComb S., Mulligan R., Dudani R., Krishnan L., Sad S. // Nat. Immunol. 2012. V. 13. P. 954–962. https://doi.org/10.1038/ni.2397
- Kaufmann S.H., Dorhoi A. // Curr. Opin. Immunol. 2013. V. 25. P. 441–449. https://doi.org/10.1016/j.coi.2013.05.005
- Moreira-Teixeira L., Mayer-Barber K., Sher A., O’Garra A. // J. Exp. Med. 2018. V. 215. P. 1273–1285. https://doi.org/10.1084/jem.20180325
- Manca C., Tsenova L., Freeman S., Barczak A.K., Tovey M., Murray P.J., Barry C., Kaplan G. // J. Interferon Cytokine Res. 2005. V. 25. P. 694–701. https://doi.org/10.1089/jir.2005.25.694
- Mayer-Barber K.D., Andrade B.B., Oland S.D., Amaral E.P., Barber D.L., Gonzales J., Derrick S.C., Shi R., Kumar N.P., Wei W., Yuan X., Zhang G., Cai Y., Babu S., Catalfamo M., Salazar A.M., Via L.E., Barry C.E., 3rd, Sher A. // Nature. 2014. V. 511. P. 99–103. https://doi.org/10.1038/nature13489
- Robinson C.M., Jung J.Y., Nau G.J. // Cytokine. 2012. V. 60. P. 233–241. https://doi.org/10.1016/j.cyto.2012.06.012
- Stanley S.A., Johndrow J.E., Manzanillo P., Cox J.S. // J. Immunol. 2007. V. 178. P. 3143–3152. https://doi.org/10.4049/jimmunol.178.5.3143
- Teles R.M., Graeber T.G., Krutzik S.R., Montoya D., Schenk M., Lee D.J., Komisopoulou E., Kelly-Scumpia K., Chun R., Iyer S.S., Sarno E.N., Rea T.H., Hewison M., Adams J.S., Popper S.J., Relman D.A., Stenger S., Bloom B.R., Cheng G., Modlin R.L. // Science. 2013. V. 339. P. 1448–1453. https://doi.org/10.1126/science.1233665
- Dorhoi A., Yeremeev V., Nouailles G., Weiner J., 3rd, Jorg S., Heinemann E., Oberbeck-Muller D., Knaul J.K., Vogelzang A., Reece S.T., Hahnke K., Mollenkopf H.J., Brinkmann V., Kaufmann S.H. // Eur. J. Immunol. 2014. V. 44. P. 2380–2393. https://doi.org/10.1002/eji.201344219
- Moreira-Teixeira L., Stimpson P.J., Stavropoulos E., Hadebe S., Chakravarty P., Ioannou M., Aramburu I.V., Herbert E., Priestnall S.L., Suarez-Bonnet A., Sousa J., Fonseca K.L., Wang Q., Vashakidze S., Rodriguez-Martinez P., Vilaplana C., Saraiva M., Papayannopoulos V., O’Garra A. // Nat. Commun. 2020. V. 11. P. 5566. https://doi.org/10.1038/s41467-020-19412-6
- Wiens K.E., Ernst J.D. // PLoS Pathog. 2016. V. 12. P. e1005809. https://doi.org/10.1371/journal.ppat.1005809
- Manca C., Tsenova L., Bergtold A., Freeman S., Tovey M., Musser J.M., Barry C.E., 3rd, Freedman V.H., Kaplan G. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 5752–5757. https://doi.org/10.1073/pnas.091096998
- Berry M.P., Graham C.M., McNab F.W., Xu Z., Bloch S.A., Oni T., Wilkinson K.A., Banchereau R., Skinner J., Wilkinson R.J., Quinn C., Blankenship D., Dhawan R., Cush J.J., Mejias A., Ramilo O., Kon O.M., Pascual V., Banchereau J., Chaussabel D., O’Garra A. // Nature. 2010. V. 466. P. 973–977. https://doi.org/10.1038/nature09247
- Zak D.E., Penn-Nicholson A., Scriba T.J., Thompson E., Suliman S., Amon L.M., Mahomed H., Erasmus M., Whatney W., Hussey G.D., Abrahams D., Kafaar F., Hawkridge T., Verver S., Hughes E.J., Ota M., Sutherland J., Howe R., Dockrell H.M., Boom W.H., Thiel B., Ottenhoff T.H.M., Mayanja-Kizza H., Crampin A.C., Downing K., Hatherill M., Valvo J., Shankar S., Parida S.K., Kaufmann S.H.E., Walzl G., Aderem A., Hanekom W.A. // Lancet. 2016. V. 387. P. 2312–2322. https://doi.org/S0140-6736(15)01316-1
- Scriba T.J., Fiore-Gartland A., Penn-Nicholson A., Mulenga H., Kimbung Mbandi S., Borate B., Mendelsohn S.C., Hadley K., Hikuam C., Kaskar M., Musvosvi M., Bilek N., Self S., Sumner T., White R.G., Erasmus M., Jaxa L., Raphela R., Innes C., Brumskine W., Hiemstra A., Malherbe S.T., Hassan-Moosa R., Tameris M., Walzl G., Naidoo K., Churchyard G., Hatherill M. // Lancet Infect. Dis. 2021. V. 21. P. 354–365. https://doi.org/10.1016/S1473-3099(20)30914-2
- Zarogoulidis P., Kioumis I., Papanas N., Manika K., Kontakiotis T., Papagianis A., Zarogoulidis K. // J. Chemother. 2012. V. 24. P. 173–177. https://doi.org/10.1179/1973947812Y.0000000005
- Zhang L., Jiang X., Pfau D., Ling Y., Nathan C.F. // J. Exp. Med. 2021. V. 218. P. e20200887. https://doi.org/10.1084/jem.20200887
- Ranjbar S., Haridas V., Jasenosky L.D., Falvo J.V., Goldfeld A.E. // Cell Rep. 2015. V. 13. P. 874–883. https://doi.org/10.1016/j.celreP.2015.09.048
- Obregon-Henao A., Duque-Correa M.A., Rojas M., Garcia L.F., Brennan P.J., Ortiz B.L., Belisle J.T. // PLoS One. 2012. V. 7. P. e29970. https://doi.org/10.1371/journal.pone.0029970
- Singh P.P., Li L., Schorey J.S. // Traffic. 2015. V. 16. P. 555–571. https://doi.org/10.1111/tra.12278
- Cheng Y., Schorey J.S. // J. Exp. Med. 2018. V. 215. P. 2919–2935. https://doi.org/10.1084/jem.20180508
- Sullivan J.T., Young E.F., McCann J.R., Braunstein M. // Infect. Immun. 2012. V. 80. P. 996–1006. https://doi.org/10.1128/IAI.05987-11
- Miller B.K., Zulauf K.E., Braunstein M. // Microbiol. Spectr. 2017. V. 5. https://doi.org/10.1128/microbiolspec.TBTB2-0013-2016
- Cheng Y., Schorey J.S. // EMBO Rep. 2019. V. 20. P. e46613. https://doi.org/10.15252/embr.201846613
- O’Connell R.M., Saha S.K., Vaidya S.A., Bruhn K.W., Miranda G.A., Zarnegar B., Perry A.K., Nguyen B.O., Lane T.F., Taniguchi T., Miller J.F., Cheng G. // J. Exp. Med. 2004. V. 200. P. 437–445. https://doi.org/10.1084/jem.20040712
- Vdovikova S., Luhr M., Szalai P., Nygard Skalman L., Francis M.K., Lundmark R., Engedal N., Johansson J., Wai S.N. // Front. Cell Infect. Microbiol. 2017. V. 7. P. 154. https://doi.org/10.3389/fcimb.2017.00154
- Frantz R., Teubner L., Schultze T., La Pietra L., Muller C., Gwozdzinski K., Pillich H., Hain T., Weber-Gerlach M., Panagiotidis G.D., Mostafa A., Weber F., Rohde M., Pleschka S., Chakraborty T., Abu Mraheil M. // mBio. 2019. V. 10. P. e01223-19. https://doi.org/10.1128/mBio.01223-19
- Harding E. // Lancet Respir Med. 2020. V. 8. P. 19. https://doi.org/S2213-2600(19)30418-7
- Burkert S., Schumann R.R. // Vaccines (Basel). 2020. V. 8. P. 67. https://doi.org/10.3390/vaccines8010067
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					


