An Improved Difference Scheme for the Cauchy Problem in the Case of a Transport Equation
- Authors: Shishkin G.I.1, Shishkina L.P.1
- 
							Affiliations: 
							- Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
 
- Issue: Vol 63, No 8 (2023)
- Pages: 1272-1278
- Section: General numerical methods
- URL: https://rjeid.com/0044-4669/article/view/664994
- DOI: https://doi.org/10.31857/S0044466923080136
- EDN: https://elibrary.ru/WTFQVG
- ID: 664994
Cite item
Abstract
The Cauchy problem for the regular transport equation is considered. The Richardson technique is used to construct an improved difference scheme that converges in the maximum norm with the second order of convergence.
About the authors
G. I. Shishkin
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
														Email: shishkin@imm.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
L. P. Shishkina
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: shishkin@imm.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
References
- Марчук Г.И. Методы вычислительной математики. М.: Наука, 1989. 608 с.
- Марчук Г.И., Шайдуров В.В. Повышение точности решений разностных схем. М.: Наука, 1979. 320 с.
- Самарский А.А. Теория разностных схем. М.: Наука, 1989. 616 с.
- Shishkin G.I., Shishkina L.P. Difference Methods for Singular Perturbation Problems. V. 140 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Boca Raton: CRC Press, 2009. 408 p.
- Калиткин Н.Н. Численные методы. М.: Наука, 1978. 512 с.
- Шишкин Г.И. Разностная схема для начально-краевой задачи для сингулярно возмущенного уравнения переноса // Ж. вычисл. матем. и матем. физ. 2017. Т. 57. № 11. С. 1824–1830.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					