A Uniformly Convergent Numerical Method for Singularly Perturbed Semilinear Integro-Differential Equations with Two Integral Boundary Conditions
- Autores: Gunes B.1, Cakir M.1
- 
							Afiliações: 
							- Dept. of Math., Van Yuzuncu Yil University
 
- Edição: Volume 63, Nº 12 (2023)
- Páginas: 2157-2157
- Seção: Ordinary differential equations
- URL: https://rjeid.com/0044-4669/article/view/664932
- DOI: https://doi.org/10.31857/S004446692312013X
- EDN: https://elibrary.ru/XENIHG
- ID: 664932
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
This paper purposes to present a new discrete scheme for the singularly perturbed semilinear Volterra–Fredholm integro-differential equation including two integral boundary conditions. Initially, some analytical properties of the solution are given. Then, using the composite numerical integration formulas and implicit difference rules, the finite difference scheme is established on a uniform mesh. Error approximations for the approximate solution and stability bounds are investigated in the discrete maximum norm. Finally, a numerical example is solved to show -uniform convergence of the suggested difference scheme.
Sobre autores
B. Gunes
Dept. of Math., Van Yuzuncu Yil University
														Email: baranselgunes23@gmail.com
				                					                																			                												                								Turkey, Van						
M. Cakir
Dept. of Math., Van Yuzuncu Yil University
							Autor responsável pela correspondência
							Email: cakirmusa@hotmail.com
				                					                																			                												                								Turkey, Van						
Bibliografia
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
