On Ranks of Matrices over Noncommutative Domains
- Authors: Abramov S.A.1, Petkovšek M.2, Ryabenko A.A.1
- 
							Affiliations: 
							- Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
- Faculty of Mathematics and Physics, University of Ljubljana
 
- Issue: Vol 63, No 5 (2023)
- Pages: 760-762
- Section: Ordinary differential equations
- URL: https://rjeid.com/0044-4669/article/view/664850
- DOI: https://doi.org/10.31857/S0044466923050022
- EDN: https://elibrary.ru/DXCTUA
- ID: 664850
Cite item
Abstract
We consider matrices with entries in some domain, i.e., in a ring, not necessarily commutative, not containing non-trivial zero divisors. The concepts of the row rank and the column rank are discussed. (Coefficients of linear dependencies belong to the domain ; left coefficients are used for rows, right coefficients for columns.) Assuming that the domain satisfies the Ore conditions, i.e., the existence of non-zero left and right common multiples for arbitrary non-zero elements, it is proven that these row and column ranks are equal, which allows us to speak about the rank of a matrix without specifying which rank (row or column) is meant. In fact, the existence of non-zero left and right common multiples for arbitrary non-zero elements of is a necessary and sufficient condition for the equality of the row and column ranks of an arbitrary matrix over. An algorithm for calculating the rank of a given matrix is proposed. Our Maple implementation of this algorithm covers the domains of differential and (-)difference operators, both ordinary and with partial derivatives and differences.
About the authors
S. A. Abramov
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
														Email: sergeyabramov@mail.ru
				                					                																			                												                								Moscow, Russia						
M. Petkovšek
Faculty of Mathematics and Physics, University of Ljubljana
														Email: Marko.Petkovsek@fmf.uni-lj.si
				                					                																			                												                								Ljubljana, Slovenia						
A. A. Ryabenko
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
							Author for correspondence.
							Email: anna.ryabenko@gmail.com
				                					                																			                												                								Moscow, Russia						
References
- Beckermann B., Cheng H., Labahn G. Fraction-free row reduction of matrices of Ore polynomials // J. Symbolic Comput. 2006. V. 41. P. 513–543.
- Ore O. Theory of non-commutative polynomials // Ann. of Math. (2). 1933. V. 34. P. 480–508.
- Bronstein M., Petkovšek M. An introduction to pseudo-linear algebra // Theoret. Comput. Sci. 1996. V. 157. P. 3–33.
- Кон П.М. Свободные кольца и их связи. М.: Мир, 1975.
- Лопатинский Я.Б. Теория общих граничных задач. Киев: Наукова Думка, 1984.
- Chyzak F., Salvy B. Non-commutative elimination in Ore algebras proves multivariate identities // J. Symbolic Comput. 1998. V. 26. P. 187–227.
- Ore O. Linear equations in non-commutative fields // Ann. of Math. (2). 1931. V. 32. P. 463–477.
- Abramov S., Petkovšek M., Ryabenko A., On linear dependence of rows and columns in matrices over non-commutative domains // Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, ACM. 2022. P. 39–43.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					