Алкилирование толуола диметилкарбонатом на MgO-Pd катализаторах на основе цеолита ZSM-5
- Авторы: Крючков М.Д.1, Куликов Л.А.1, Кардашев С.В.1, Максимов А.Л.1,2, Караханов Э.А.1
- 
							Учреждения: 
							- Московский государственный университет им. М. В. Ломоносова
- Институт нефтехимического синтеза им. А. В. Топчиева РАН
 
- Выпуск: Том 98, № 1 (2025)
- Страницы: 19-28
- Раздел: Катализ
- URL: https://rjeid.com/0044-4618/article/view/679806
- DOI: https://doi.org/10.31857/S0044461825010026
- EDN: https://elibrary.ru/LKDBKA
- ID: 679806
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Работа посвящена изучению закономерностей протекания процесса алкилирования толуола диметилкарбонатом на серии катализаторов на основе цеолита ZSM-5, модифицированного MgO и Pd. Конверсия толуола в присутствии немодифицированного цеолита ZSM-5 достигает 35%, а доля п-ксилола в продуктах составляет 22%. Модификация цеолита MgO и Pd приводит к снижению конверсии толуола и увеличению доли п-ксилола в продуктах реакции. Наибольшая селективность п-ксилола (86%) с наименьшей конверсией толуола (11%) была достигнута в присутствии катализатора, полученного модификацией цеолита ZSM-5 нанесением 10 мас% MgO и 1 мас% Pd. Установлено, что минимальный выход три- и тетразамещенных бензолов достигается при содержании палладия в катализаторах 1–3 мас%. Представлен предположительный механизм протекания процессов.
Ключевые слова
Об авторах
Михаил Дмитриевич Крючков
Московский государственный университет им. М. В. Ломоносова
							Автор, ответственный за переписку.
							Email: mixail.kryuchkov.97@mail.ru
				                	ORCID iD: 0009-0009-9931-2867
				                																			                												                	Россия, 							Москва						
Леонид Андреевич Куликов
Московский государственный университет им. М. В. Ломоносова
														Email: mixail.kryuchkov.97@mail.ru
				                	ORCID iD: 0000-0002-7665-5404
				                																			                								
к.х.н.
Россия, МоскваСергей Викторович Кардашев
Московский государственный университет им. М. В. Ломоносова
														Email: mixail.kryuchkov.97@mail.ru
				                	ORCID iD: 0000-0003-1818-7697
				                																			                								
к.х.н.
Россия, МоскваАнтон Львович Максимов
Московский государственный университет им. М. В. Ломоносова; Институт нефтехимического синтеза им. А. В. Топчиева РАН
														Email: mixail.kryuchkov.97@mail.ru
				                	ORCID iD: 0000-0001-9297-4950
				                																			                								
чл.-корр. РАН, д.х.н., проф.
Россия, Москва; МоскваЭдуард Аветисович Караханов
Московский государственный университет им. М. В. Ломоносова
														Email: mixail.kryuchkov.97@mail.ru
				                					                																			                								
д.х.н., проф.
Россия, МоскваСписок литературы
- Shi Q., Gonçalves J. C., Ferreira A. F. P., Rodrigues A. E. A review of advances in production and separation of xylene isomers // Chem. Eng. Proc. 2021. V. 169. ID 108603. https://doi.org/10.1016/j.cep.2021.108603
- Liu S., Yang S., He J., Mao D., Yin C. Efficient synthesis of chain-like ZSM-5 zeolite for the m-xylene isomerization reaction // Inorg. Chem. Commun. 2021. V. 128. ID 108564. https://doi.org/10.1016/j.inoche.2021.108564
- Демихова Н. Р., Рубцова М. И., Винокуров В. А., Глотов А. П. Изомеризация ксилолов (обзор) // Нефтехимия. 2021. Т. 61. № 6. С. 737–759. https://doi.org/10.31857/S0028242121060010
- [Demikhova N. R., Rubtsova M. I., Vinokurov V. A., Glotov A. P. Isomerization of xylenes (a review) // Pet. Chem. 2021. V. 61. N 11. P. 1158–1177. https://doi.org/10.1134/S096554412111013X].
- Albahar M., Li C., Zholobenko V. L., Garforth A. A. The effect of ZSM-5 zeolite crystal size on p-xylene selectivity in toluene disproportionation // Micropor. Mesopor. Mater. 2020. V. 302. ID 110221. https://doi.org/10.1016/j.micromeso.2020.110221
- Wang Y., Xu S., He X., Yang F., Zhu X. Regulating the acid sites and framework aluminum siting in MCM-22 zeolite to enhance its performance in alkylation of
- benzene with methanol // Micropor. Mesopor. Mater. 2022. V. 332. ID 111677. https://doi.org/10.1016/j.micromeso.2021.111677
- Ahn J. H., Kolvenbach R., Gutiérrez O. Y., Al-Khattaf S. S., Jentys A., Lercher J. A. Tailoring p-xylene selectivity in toluene methylation on medium pore-size zeolites // Micropor. Mesopor. Mater. 2015. V. 210. P. 52–59. https://doi.org/10.1016/j.micromeso.2015.02.018
- Huang X., Wang R., Pan X., Wang C., Fan M., Zhu Y., Wang Y., Peng J. Catalyst design strategies towards highly shape-selective HZSM-5 for para-xylene through toluene alkylation // // Green Energy Environ. 2020. V. 5. N 4. P. 385–393. https://doi.org/10.1016/j.gee.2019.12.001
- Zhou J., Liu Z., Wang Y., Kong D., Xie Z. Shape selective catalysis in methylation of toluene: Development, challenges and perspectives // Front Chem. Sci. Eng. 2018. V. 12. N 1. P. 103–112. https://doi.org/10.1007/s11705-017-1671-x
- Kumar L., Asthana S., Laxman Newalkar B., Kishore Pant K. Selective toluene methylation to p-xylene: Current status & future perspective // Catal. Rev. Sci. Eng. 2024. V. 66. N 3. P. 820–862. https://doi.org/10.1080/01614940.2022.2097641
- Jing H.-J., Yang F.-K., Xia Y.-M., Feng J.-Q., Liu J.-L., Zong Q.-Y. A study on the selectivity of methanol aromatization // Pet. Sci. Technol. 2012. V. 30. N 16. P. 1737–1746. https://doi.org/10.1080/10916466.2010.509077
- Zhao Y., Wu H., Tan W., Zhang M., Liu M., Song C., Wang X., Guo X. Effect of metal modification of HZSM-5 on catalyst stability in the shape-selective methylation of toluene // Catal. Today. 2010. V. 156. N 1–2. P. 69–73. https://doi.org/10.1016/j.cattod.2009.12.012
- Yan B., Wu J., Li X., Liu N., Ma Q., Xue B. Selective Synthesis of para-xylene in the alkylation of toluene via regulation of MgO location in Co-modification over HZSM-5 // Catal. Lett. 2024. V. 154. N 6. P. 2752–2760. https://doi.org/10.1007/s10562-023-04536-3
- Zhao Y., Ma X., Ren D., Xia Y. A strategy to improve the para-selectivity in toluene methylation on P2O5-ZSM-5 modified by the para-xylene placeholder method // React. Kinet. Mech. Cat. 2021. V. 132. N 2. P. 967–981. https://doi.org/10.1007/s11144-021-01929-6
- Martinez-Espin J. S., De Wispelaere K., Westgård Erichsen M., Svelle S., Janssens T. V. W., Van Speybroeck V., Beato P., Olsbye U. Benzene co-reaction with methanol and dimethyl ether over zeolite and zeotype catalysts: Evidence of parallel reaction paths to toluene and diphenylmethane // J. Catal. 2017. V. 349. P. 136–148. https://doi.org/10.1016/j.jcat.2017.03.007
- Zhang M., Xu Y., Williams B. L., Xiao M., Wang S., Han D., Sun L., Meng Y. Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2 // J. Clean. Prod. 2021. V. 279. ID 123344. https://doi.org/10.1016/j.jclepro.2020.123344
- Ling-Ling L., J. Michael J., Xiao-Wa N., Chun-Shan S., Xin-Wen G. Reaction mechanism of toluene methylation with dimethyl carbonate or methanol catalyzed by H-ZSM-5 // Acta Physico-Chimica Sinica. 2013. V. 29. N 07. P. 1467–1478. https://doi.org/10.3866/PKU.WHXB201304262
- Fu Y., Zhu H., Shen J. Thermal decomposition of dimethoxymethane and dimethyl carbonate catalyzed by solid acids and bases // Thermochim. Acta. 2005. V. 434. N 1–2. P. 88–92. https://doi.org/10.1016/j.tca.2005.01.021
- Kurzina I. A., Reshetnikov S. I., Karakchieva N. I., Kurina L. N. Direct synthesis of dimethyl ether from synthesis gas: Experimental study and mathematical modeling // Chem. Eng. J. 2017. V. 329. P. 135–141. https://doi.org/10.1016/j.cej.2017.04.132
- Khadzhiev S. N., Magomedova M. V., Peresypkina E. G. Mechanism of olefin synthesis from methanol and dimethyl ether over zeolite catalysts: A review // Pet. Chem. 2014. V. 54. N 4. P. 245–269. https://doi.org/10.1134/S0965544114040057
- Hill I., Malek A., Bhan A. Kinetics and mechanism of benzene, toluene, and xylene methylation over H-MFI // ACS Catal. 2013. V. 3. N 9. P. 1992–2001. https://doi.org/10.1021/cs400377b
- Rasouli M., Atashi H., Mohebbi-Kalhori D., Yaghobi N. Bifunctional Pt/Fe-ZSM-5 catalyst for xylene isomerization // J. Taiwan Inst. Chem. Eng. 2017. V. 78. P. 438–446. https://doi.org/10.1016/j.jtice.2017.05.018
- Waziri S. M., Aitani A. M., Al-Khattaf S. Transformation of toluene and 1,2,4-trimethylbenzene over ZSM-5 and mordenite catalysts: A comprehensive kinetic model with reversibility // Ind. Eng. Chem. Res. 2010. V. 49. N 14. P. 6376–6387. https://doi.org/10.1021/ie100527x
- Lacroix J. F., Soldera A., Lavoie J. M. A thermodynamic resolution of dimethyl carbonate decarboxylation and the first example of its reversibility: Dimethyl ether carboxylation // J. CO2 Utilization. 2014. V. 7. P. 46–50. https://doi.org/10.1016/j.jcou.2014.04.001
- Wang C., Xu J., Qi G., Gong Y., Wang W., Gao P., Wang Q., Feng N., Liu X., Deng F. Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5 // J. Catal. 2015. V. 332. P. 127–137. https://doi.org/10.1016/j.jcat.2015.10.001
- Zeng S., Zhang W., Li J., Lin S., Xu S., Wei Y., Liu Z. Revealing the roles of hydrocarbon pool mechanism in ethanol-to-hydrocarbons reaction // J. Catal. 2022. V. 413. P. 517–526. https://doi.org/10.1016/j.jcat.2022.07.002
- Liao H. Mechanism of methanol-to-olefin (MTO) reaction // App. Comp. Eng. 2024. V. 85. N 1. P. 159–164. https://doi.org/10.54254/2755-2721/85/20240688
- Волнина Э. А., Кипнис М. А., Хаджиев С. Н. Каталитическая химия диметилового эфира (обзор) // Нефтехимия. 2017. Т. 57. № 3. С. 343–262. https://doi.org/10.7868/S0028242117030133 [Volnina E. A., Kipnis M. A., Khadzhiev S. N. Catalytic chemistry of dimethyl ether (review) // Pet. Chem. 2017. V. 57. N 5. P. 353–373. https://doi.org/10.1134/S0965544117050139].
- Ortega C., Hessel V., Kolb G. Dimethyl ether to hydrocarbons over ZSM-5: Kinetic study in an external recycle reactor // Chem. Eng. J. 2018. V. 354. P. 21–34. https://doi.org/10.1016/j.cej.2018.07.178
- Aboul-Gheit A. K., Hanafy S. A., Aboul-Enein A. A., Ghoneim S. A. Para-xylene maximization // J. Taiwan Inst. Chem. Eng. 2011. V. 42. N 5. P. 860–867. https://doi.org/10.1016/j.jtice.2011.03.004
- Gao Y., Chen S.-L., Wei Y., Wang Y., Sun W., Cao Y., Zeng P. Kinetics of coke formation in the dimethyl ether-to-olefins process over SAPO-34 catalyst // Chem. Eng. J. 2017. V. 326. P. 528–539. https://doi.org/10.1016/j.cej.2017.05.158
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 





