Carbon Nanodots: Preparation, Properties, Application (A Review)
- Autores: Karpushkin E.A.1, Kharochkina E.S.1, Lopatina L.I.1, Sergeev V.G.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
 
- Edição: Volume 94, Nº 1 (2024)
- Páginas: 136-164
- Seção: Articles
- URL: https://rjeid.com/0044-460X/article/view/667255
- DOI: https://doi.org/10.31857/S0044460X24010122
- EDN: https://elibrary.ru/HKKICK
- ID: 667255
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Carbon nanodots are a special class of nanoparticles with a size of 1 nm, consisting mainly of carbon and having pronounced fluorescent properties. They have been discovered 20 years ago, and since then have found numerous applications as fluorescent sensors, photocatalysts, fluorescent inks, etc., which has led to the rapid development of methods for their production and study. This review summarizes modern ideas about the synthesis, isolation, optical properties and application of carbon nanodots. The main directions for further research in this area are formulated.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
E. Karpushkin
Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: eukarr@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
E. Kharochkina
Lomonosov Moscow State University
														Email: eukarr@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
L. Lopatina
Lomonosov Moscow State University
														Email: eukarr@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
V. Sergeev
Lomonosov Moscow State University
														Email: eukarr@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Xu X., Ray R., Gu Y., Ploehn H.J., Gearheart L., Raker K., Scrivens W.A. // J. Am. Chem. Soc. 2004. Vol. 126. N 40. P. 12736. doi: 10.1021/ja040082h
- Hu J., Sun Y., Aryee A.A., Qu L., Zhang K., Li Z. // Anal. Chim. Acta. 2022. Vol. 1209. P. 338885. doi: 10.1016/j.aca.2021.338885
- Facure M.H.M., Schneider R., Mercante L.A., Correa D.S. // Environ. Sci.: Nano. 2020. Vol. 7. N 12. P. 3710. doi: 10.1039/d0en00787k
- Mansuriya B.D., Altintas Z. // Nanomaterials. 2021. Vol. 11. N 10. P. 2525. doi: 10.3390/nano11102525.
- Cui J., Panfil Y.E., Koley S., Shamalia D., Waiskopf N., Remennik S., Popov I., Oded M., Banin U. // Nat. Commun. 2019. Vol. 10. N 1. P. 5401. doi: 10.1038/s41467-019-13349-1
- Liang W., Wang P., Meziani M.J., Ge L., Yang L., Patel A.K., Morgan S.O., Sun, Y.-P. // Nanoscale Adv. 2021. Vol. 3. N 14. P. 4186–4195. doi: 10.1039/d1na00286d
- Liang W., Ge L., Hou X., Ren X., Yang L., Bunker C.E., Overton C.M., Wang P., Sun Y.-P. // C. 2019. Vol. 5. N 4. P. 70. doi: 10.3390/c5040070
- Essner J.B., Kist J.A., Polo-Parada L., Baker G.A. // Chem. Mater. 2018. Vol. 30. N 6. P. 1878. doi: 10.1021/acs.chemmater.7b04446
- Sun Y.-P., Zhou B., Lin Y., Wang W., Fernando K.A.S., Pathak P., Meziani M.J., Harruff B.A., Wang X., Wang H., Luo P.G., Yang H., Kose M.E., Chen B., Veca L. M., Xie S.-Y. // J. Am. Chem. Soc. 2006. Vol. 128. N 24. P. 7756. doi: 10.1021/ja062677d
- Pan D., Zhang J., Li Z., Wu M. // Adv. Mater. 2010. Vol. 22. N 6. P. 734. doi: 10.1002/adma.200902825
- Zhu S., Song Y., Zhao X., Shao J., Zhang J., Yang B. // Nano Res. 2015. Vol. 8. N 2. P. 355. doi: 10.1007/s12274-014-0644-3
- Karpushkin E.A., Bugerya A.A., Lopatina L.I., Sergeyev V.G. // Rev. Adv. Chem. 2023. Vol. 12. N 4, P. 195. doi: 10.1134/S2634827622600220
- Karpushkin E.A., Mesnyankina E.A., Tagirova M.R., Zaborova O.V., Sergeyev V.G. // Russ. J. Gen. Chem. 2022. Vol. 92. N 10. P. 2042. doi: 10.1134/s1070363222100188
- Karpushkin E., Kharochkina E., Mesnyankina E., Zaborova O., Sergeyev V. // Physchem. 2023. Vol. 3. N 1. P. 92. doi: 10.3390/physchem3010008
- Hu S.-L., Niu K.-Y., Sun J., Yang J., Zhao N.-Q., Du X.-W. // J. Mater. Chem. 2009. Vol. 19. P. 484. doi: 10.1039/B812943F
- Li X., Wang H., Shimizu Y., Pyatenko A., Kawaguchi K., Koshizaki N. // Chem. Commun. 2011. Vol. 47. N. 3. P. 932. doi: 10.1039/c0cc03552a
- Peng H., Travas-Sejdic J. // Chem. Mater. 2009. Vol. 21. N 23. P. 5563. doi: 10.1021/cm901593y.
- Zhou J., Booker C., Li R., Zhou X., Sham T.-K., Sun X., Ding, Z. // J. Am. Chem. Soc. 2007. Vol. 129. N 4. P. 744. doi: 10.1021/ja0669070
- Zhuo S., Shao M., Lee S.-T. // ACS Nano. 2012. Vol. 6. N 2. P. 1059. doi: 10.1021/nn2040395
- Chen B., Li F., Li S., Weng W., Guo H., Guo T., Zhang X., Chen Y., Huang T., Hong X., You S., Lin Y., Zeng K., Chen S. // Nanoscale. 2013. Vol. 5. N 5. P. 1967. doi: 10.1039/c2nr32675b
- Ma C.-B., Zhu Z.-T., Wang H.-X., Huang X., Zhang X., Qi X., Zhang H.-L., Zhu Y., Deng X., Peng Y., Han Y., Zhang H. // Nanoscale. 2015. Vol. 7. N 22. P. 10162. doi: 10.1039/c5nr01757b
- Strauss V., Wang H., Delacroix S., Ledendecker M., Wessig P. // Chem. Sci. 2020. Vol. 11. N 31. P. 8256. doi: 10.1039/d0sc01605e
- Golon A., Kuhnert N. // J. Agric. Food Chem. 2012. Vol. 60. N 12. P. 3266. doi: 10.1021/jf204807z
- Zhu H., Wang X., Li Y., Wang Z., Yang F., Yang X. // Chem. Commun. 2009. Vol. 34. P. 5118. doi: 10.1039/b907612c
- Zhai X., Zhang P., Liu C., Bai T., Li W., Dai L., Liu W. // Chem. Commun. 2012. Vol. 48. N 64. P. 7955. doi: 10.1039/c2cc33869f
- Yang Z.-C., Wang M., Yong A.M., Wong S.Y., Zhang X.-H., Tan H., Chang A.Y., Li X., Wang J. // Chem. Commun. 2011. Vol. 47. N 42. P. 11615. doi: 10.1039/c1cc14860e
- Cailotto S., Amadio E., Facchin M., Selva M., Pontoglio E., Rizzolio F., Riello P., Toffoli G., Benedetti A., Perosa A. // ACS Med. Chem. Lett. 2018. Vol. 9. N 8. P. 832. doi: 10.1021/acsmedchemlett.8b00240
- Deng Y., Zhou Y., Li Q., Qian J. // Anal. Methods. 2021. Vol. 13. N 33. P. 3685. doi: 10.1039/d1ay00885d
- Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B. // Angew. Chem. Int. Ed. 2013. Vol. 52. N 14. P. 3953. doi: 10.1002/anie.201300519
- Khan W.U., Wang D., Zhang W., Tang Z., Ma X., Ding X., Du S., Wang Y. // Sci. Rep. 2017. Vol. 7. N 1. P. 14866. doi: 10.1038/s41598-017-15054-9
- Yang Y., Cui J., Zheng M., Hu C., Tan S., Xiao Y., Yang Q., Liu Y. // Chem. Commun. 2012. Vol. 48. N 3. P. 380. doi: 10.1039/c1cc15678k
- Gu J., Wang W., Zhang Q., Meng Z., Jia X, Xi K. // RSC Adv. 2013. Vol. 3. P. 15589. doi: 10.1039/C3RA41654B
- Liang Q., Ma W., Shi Y., Li Z., Yang X. // Carbon. 2013. Vol. 60. P. 421. doi: 10.1016/j.carbon.2013.04.055
- De B., Karak N. // RSC Adv. 2013. Vol. 3. P. 8286. doi: 10.1039/C3RA00088E
- Msto R.K., Othman H.O., Al-Hashimi B.R., Salahuddin Ali D., Hassan D.H., Hassan A.Q., Smaoui S. // J. Food Qual. 2023. Vol. 2023. P. 5555608. doi: 10.1155/2023/5555608
- He Q., Yu Y., Wang J., Suo X., Liu Y. // Ind. Eng. Chem. Res. 2021. Vol. 60. N 12. P. 4552. doi: 10.1021/acs.iecr.0c06280
- Boukhvalov D.W., Osipov V.Y. // Crystals. 2023. Vol. 13. N 5. P. 716. doi: 10.3390/cryst13050716
- Senanayake R.D., Yao X., Froehlich C.E., Cahill M.S., Sheldon T.R., McIntire M., Haynes C.L., Hernandez R. // J. Chem. Inf. Model. 2022. Vol. 62. N 23. P. 5918. doi: 10.1021/acs.jcim.2c01007
- Poerschmann J., Weiner B., Koehler R., Kopinke F.-D. // ACS Sustainable Chem. Eng. 2017. Vol. 5. N 8. P. 6420. doi: 10.1021/acssuschemeng.7b00276
- Papaioannou N., Marinovic A., Yoshizawa N., Goode A.E., Fay M., Khlobystov A., Titirici M.-M., Sapelkin A. // Sci. Rep. 2018. Vol. 8. N 1. P. 6559. doi: 10.1038/s41598-018-25012-8
- Li S., Liang F., Wang J., Zhang H., Zhang S. // Adv. Powder Technol. 2017. Vol. 28. N 10. P. 2648. doi: 10.1016/j.apt.2017.07.017
- Chen C.-Y., Tsai Y.-H., Chang C.-W. // New J. Chem. 2019. Vol. 43. N 16. P. 6153. doi: 10.1039/c9nj00434c
- Kalaiyarasan G., Joseph J., Kumar P. // ACS Omega. 2020. Vol. 5. N 35. P. 22278. doi: 10.1021/acsomega.0c02627
- Hu Q., Gong X., Liu L., Choi M.M.F. // J. Nanomater. 2017. Vol. 2017. P. 1804178. doi: 10.1155/2017/1804178
- Pandey S., Mewada A., Oza G., Thakur M., Mishra N., Sharon M., Sharon M. // Nanosci. Nanotechnol. Lett. 2013. Vol. 5. N 7. P. 775. doi: 10.1166/nnl.2013.1617
- Liu L., Xu Z. // Anal. Methods. 2019. Vol. 11. N 6. P. 760. doi: 10.1039/c8ay02660b
- Kokorina A.A., Bakal A.A., Shpuntova D.V., Kostritskiy A.Y., Beloglazova N.V., De Saeger S., Sukhorukov G.B., Sapelkin A.V., Goryacheva I.Y. // Sci. Rep. 2019. Vol. 9. N 1. P. 14665. doi: 10.1038/s41598-019-50922-6
- Carbonaro C.M., Corpino R., Salis M., Mocci F., Thakkar S.V., Olla C., Ricci P.C. // C. 2019. Vol. 5. N 4. P. 60. doi: 10.3390/c5040060
- Mintz K.J., Zhou Y., Leblanc R.M. // Nanoscale. 2019. Vol. 11. N 11. P. 4634. doi: 10.1039/c8nr10059d
- Li L., Dong T. // J. Mater. Chem. C. 2018. Vol. 6. N 60. P. 7944. doi: 10.1039/c7tc05878k
- Zhi B., Yao X., Cui Y., Orr G., Haynes C.L. // Nanoscale. 2019. Vol. 11. N 43. P. 20411. doi: 10.1039/c9nr05028k
- Qu D., Zheng M., Zhang L., Zhao H., Xie Z., Jing X., Haddad R.E., Fan H., Sun Z. // Sci. Rep. 2014. Vol. 4. N 1. P. 5294. doi: 10.1038/srep05294
- Koutsogiannis P., Thomou E., Stamatis H., Gournis D., Rudolf P. // Adv. Phys.: X. 2020. Vol. 5. N 1. P. 1758592. doi: 10.1080/23746149.2020.1758592
- Parker C.A., Rees W.T. // Analyst. 1960. Vol. 85. N. 1013. P. 587. doi: 10.1039/an9608500587
- Brouwer A.M. // Pure Appl. Chem. 2011. Vol. 83. N 12. P. 2213. doi: 10.1351/pac-rep-10-09-31
- Rurack K. Standardization and Quality Assurance in Fluorescence Measurements I / Ed. U. Resch-Genger. Berlin; Heidelberg: Springer, 2008. P. 101. doi: 10.1007/4243_2008_019.
- Hallaji Z., Bagheri Z., Kalji S.-O., Ermis E., Ranjbar B. // FlatChem. 2021. Vol. 29. P. 100271. doi: 10.1016/j.flatc.2021.100271
- Bhunia S.K., Saha A., Maity A.R., Ray S.C., Jana N.R. // Sci. Rep. 2013. Vol. 3. N 1. P. 1473. doi: 10.1038/srep01473
- Li H., He X., Kang Z., Huang H., Liu Y., Liu J., Lian S., Tsang C.H.A., Yang X., Lee S.-T. // Angew. Chem. Int. Ed. 2010. Vol. 49. N 26. P. 4430. doi: 10.1002/anie.200906154
- Sharma A., Gadly T., Neogy S., Ghosh S.K., Kumbhakar M. // J. Phys. Chem. Lett. 2017. Vol. 8. N 5. P. 1044. doi: 10.1021/acs.jpclett.7b00170
- Zhi B., Cui Y., Wang S., Frank B.P., Williams D.N., Brown R.P., Melby E.S., Hamers R.J., Rosenzweig Z., Fairbrother D.H., Orr G., Haynes C.L. // ACS Nano. 2018. Vol. 12. N 6. P. 5741. doi: 10.1021/acsnano.8b01619
- Yuan F., Wang Z., Li X., Li Y., Tan Z., Fan L., Yang S. // Adv. Mater. 2017. Vol. 29. N 3. P. 1604436. doi: 10.1002/adma.201604436
- Ding H., Li X.-H., Chen X.-B., Wei J.-S., Li X.-B., Xiong H.-M. // J. Appl. Phys. 2020. Vol. 127. N 23. P. 231101. doi: 10.1063/1.5143819
- Ding H., Yu S.-B., Wei J.-S., Xiong H.-M. // ACS Nano. 2016. Vol. 10. N 1. P. 484. doi: 10.1021/acsnano.5b05406
- Schneider J., Reckmeier C.J., Xiong Y., von Seckendorff M., Susha A.S., Kasák P., Rogach A.L. // J. Phys. Chem. C. 2017. Vol. 121. N 3. P. 2014. doi: 10.1021/acs.jpcc.6b12519
- Pontes S.M.A., Rodrigues V.S.F., Carneiro S.V., Oliveira J.J.P., Moura T.A., Paschoal A.R., Antunes R.A., Oliveira D.R., de Oliveira J.R., Fechine L.M.U.D., Mazzetto S.E., Fechine P.B.A., Clemente C. da S. // Nano-Struct. Nano-Objects. 2022. Vol. 32. P. 100917. doi: 10.1016/j.nanoso.2022.100917
- Kandasamy G. // C. 2019. Vol. 5. N 2. P. 24. doi: 10.3390/c5020024
- Shan X., Chai L., Ma J., Qian Z., Chen J., Feng H. // Analyst. 2014. Vol. 139. N 10. P. 2322. doi: 10.1039/c3an02222f
- Bourlinos A.B., Trivizas G., Karakassides M.A., Baikousi M., Kouloumpis A., Gournis D., Bakandritsos A., Hola K., Kozak O., Zboril R., Papagiannouli I., Aloukos P., Couris S. // Carbon. 2015. Vol. 83. P. 173. doi: 10.1016/j.carbon.2014.11.032
- Jana J., Ganguly M., Chandrakumar Kuttay R.S., Rao G.M., Pal T. // Langmuir. 2017. Vol. 33. N 2. P. 573. doi: 10.1021/acs.langmuir.6b04100
- Jia Y., Hu Y., Li Y., Zeng Q., Jiang X., Cheng Z. // Mikrochim. Acta. 2019. Vol. 186. N 2. P. 84. doi: 10.1007/s00604-018-3196-5
- Zuo G., Xie A., Li J., Su T., Pan X., Dong W. // J. Phys. Chem. C. 2017. Vol. 121. N 47. P. 26558. doi: 10.1021/acs.jpcc.7b10179
- Zhou J., Shan X., Ma J., Gu Y., Qian Z., Chen J., Feng H. // RSC Adv. 2014. Vol. 4. P. 5465. doi: 10.1039/C3RA45294H
- Sarkar S., Das K., Ghosh M., Das P.K. // RSC Adv. 2015. Vol. 5. N 81. P. 65913. doi: 10.1039/c5ra09905f
- Shi D., Yan F., Zheng T., Wang Y., Zhou X., Chen L. // RSC Adv. 2015. Vol. 5. N 119. P. 98492. doi: 10.1039/c5ra18800h
- Wang W., Li Y., Cheng L., Cao Z., Liu W. // J. Mater. Chem. B. 2014. Vol. 2. N 1. P. 46. doi: 10.1039/c3tb21370f
- Chandra S., Patra P., Pathan S.H., Roy S., Mitra S., Layek A., Bhar R., Pramanik P., Goswami A. // J. Mater. Chem. B. 2013. Vol. 1. N 18. P. 2375. doi: 10.1039/c3tb00583f
- Xu Q., Pu P., Zhao J., Dong C., Gao C., Chen Y., Chen J., Liu Y., Zhou H. // J. Mater. Chem. A. 2015. Vol. 3. N 2. P. 542. doi: 10.1039/c4ta05483k
- Travlou N.A., Secor J., Bandosz T.J. // Carbon. 2017. Vol. 114. P. 544. doi: 10.1016/j.carbon.2016.12.035
- Naik V.M., Gunjal D.B., Gore A.H., Pawar S.P., Mahanwar S.T., Anbhule P.V., Kolekar G.B. // Diamond Relat. Mater. 2018. Vol. 88. P. 262. doi: 10.1016/j.diamond.2018.07.018
- Wu F., Yang M., Zhang H., Zhu S., Zhu X., Wang K. // Opt. Mater. 2018. Vol. 77. P. 258. doi: 10.1016/j.optmat.2018.01.048
- Liu S., Tian J., Wang L., Zhang Y., Qin X., Luo Y., Asiri A.M., Al-Youbi A.O., Sun X. // Adv. Mater. 2012. Vol. 24. N 15. P. 2037. doi: 10.1002/adma.201200164
- Dey S., Chithaiah P., Belawadi S., Biswas K., Rao C.N.R. // J. Mater. Res. 2014. Vol. 29. N 3. P. 383. doi: 10.1557/jmr.2013.295
- Wang L., Yin Y., Jain A., Zhou H.S. // Langmuir. 2014. Vol. 30. N 47. P. 14270. doi: 10.1021/la5031813
- Niu J., Gao H. // J. Lumin. 2014. Vol. 149. P. 159. doi: 10.1016/j.jlumin.2014.01.026
- Hu R., Li L., Jin W.J. // Carbon. 2017. Vol. 111. P. 133. doi: 10.1016/j.carbon.2016.09.038
- Wang H., Gao P., Wang Y., Guo J., Zhang K.-Q., Du D., Dai X., Zou G. // APL Mater. 2015. Vol. 3. N 8. P. 086102. doi: 10.1063/1.4928028
- Simões E.F.C., Leitão J.M.M., Esteves da Silva J.C.G. // Anal. Chim. Acta. 2017. Vol. 960. P. 117. doi: 10.1016/j.aca.2017.01.007
- Wang J., Xiang X., Milcovich G., Chen J., Chen C., Feng J., Hudson S.P., Weng X., Ruan Y. // J. Mol. Recognit. 2019. Vol. 32. N. 2. P. e2761. doi: 10.1002/jmr.2761
- Ding H., Wei J.-S., Xiong H.-M. // Nanoscale. 2014. Vol. 6. N 22. P. 13817. doi: 10.1039/c4nr04267k
- Anjana R.R., Anjali Devi J.S., Jayasree M., Aparna R.S., Aswathy B., Praveen G.L., Lekha G.M., Sony G. // Mikrochim. Acta. 2017. Vol. 185. N 1. P. 11. doi: 10.1007/s00604-017-2574-8
- Zhou W., Zhuang J., Li W., Hu C., Lei B., Liu Y. // J. Mater. Chem. C. 2017. Vol. 5. N 32. P. 8014. doi: 10.1039/c7tc01819c
- Qu D., Zheng M., Du P., Zhou Y., Zhang L., Li D., Tan H., Zhao Z., Xie Z., Sun Z. // Nanoscale. 2013. Vol. 5. N 24. P. 12272. doi: 10.1039/c3nr04402e
- Xing X., Huang L., Zhao S., Xiao J., Lan M. // Microchem. J. 2020. Vol. 157. P. 105065. doi: 10.1016/j.microc.2020.105065
- Liu J., Li R., Yang B. // ACS Cent. Sci. 2020. Vol. 6. N 12. P. 2179. doi: 10.1021/acscentsci.0c01306
- Qu S., Wang X., Lu Q., Liu X., Wang L. // Angew. Chem. Int. Ed. 2012. Vol. 51. N 49. P. 12215. doi: 10.1002/anie.201206791.
- Song X., Guo Q., Cai Z., Qiu J., Dong G. // Ceram. Int. 2019. Vol. 45. N. 14. P. 17387. doi: 10.1016/j.ceramint.2019.05.299
- Wyrzykowski D., Hebanowska E., Nowak-Wiczk G., Makowski M., Chmurzyński L. // J. Therm. Anal. Calorim. 2011. Vol. 104. N 2. P. 731. doi: 10.1007/s10973-010-1015-2
- Wang D., Dong N., Niu Y. Hui S. // J. Chem. 2019. Vol. 2019. P. 6853638. doi: 10.1155/2019/6853638
- Kasprzyk W., Świergosz T., Romańczyk P.P., Feldmann J., Stolarczyk J.K. // Nanoscale. 2022. Vol. 14. N 39. P. 14368. doi: 10.1039/d2nr03176k
- Sell W.J., Easterfield T.H. // J. Chem. Soc. 1893. Vol. 63. P. 1035. doi: 10.1039/ct8936301035.
- Kasprzyk W., Świergosz T., Bednarz S., Walas K., Bashmakova N.V., Bogdał D. // Nanoscale. 2018. Vol. 10. N 29. P. 13889. doi: 10.1039/c8nr03602k
- La Ferla B., Vercelli B. // Nanomaterials. 2023. Vol. 13. N 10. P. 1635. doi: 10.3390/nano13101635
- Stepanidenko E.A., Vedernikova A.A., Miruschenko M.D., Dadadzhanov D.R., Feferman D., Zhang B., Qu S., Ushakova E.V. // J. Phys. Chem. Lett. 2023. Vol. 14. P. 11522. doi: 10.1021/acs.jpclett.3c02837
- Demchenko A. // C. 2019. Vol. 5. N 4. P. 71. doi: 10.3390/c5040071
- Bhuyan R., Bramhaiah K., Bhattacharyya S. // J. Colloid Interface Sci. 2022. Vol. 605. P. 364. doi: 10.1016/j.jcis.2021.07.119
- Gao X., Du C., Zhuang Z., Chen W. // J. Mater. Chem. (C). 2016. Vol. 4. N 29. P. 6927. doi: 10.1039/c6tc02055k
- Batool M., Junaid H.M., Tabassum S., Kanwal F., Abid K., Fatima Z., Shah A. T. // Crit. Rev. Anal. Chem. 2022. Vol. 52. N 4. P. 756. doi: 10.1080/10408347.2020.1824117
- Chu H.-W., Unnikrishnan B., Anand A., Lin Y.-W., Huang C.-C. // J. Food Drug Anal. 2020. Vol. 28. N. 4. P. 539. doi: 10.38212/2224-6614.1269
- Kaur I., Batra V., Kumar Reddy Bogireddy N., Torres Landa S.D., Agarwal V. // Food Chem. 2023. Vol. 406. P. 135029. doi: 10.1016/j.foodchem.2022.135029
- Vallan L., Imahori H. // ACS Appl. Electron. Mater. 2022. Vol. 4. N 9. P. 4231. doi: 10.1021/acsaelm.2c01021
- Tajik S., Dourandish Z., Zhang K., Beitollahi H., Van Le Q., Jang H.W., Shokouhimehr M. // RSC Adv. 2020. Vol. 10. N 26. P. 15406. doi: 10.1039/d0ra00799d
- Jung H., Sapner V.S., Adhikari A., Sathe B.R., Patel R. // Front. Chem. 2022. Vol. 10. P. 881495. doi: 10.3389/fchem.2022.881495
- Akbar K., Moretti E., Vomiero A. // Adv. Opt. Mater. 2021. Vol. 9. N 17. P. 2100532. doi: 10.1002/adom.202100532
- Shen L., Zhang L., Chen M., Chen X., Wang J. // Carbon. 2013. Vol. 55. P. 343. doi: 10.1016/j.carbon.2012.12.074
- Lai C.-W., Hsia Y.-H., Peng Y.-K., Chou P.-T. // J. Mater. Chem. 2012. Vol. 22. P. 14403. doi: 10.1039/C2JM32206D
- Guo X., Wang C.-F., Yu Z.-Y., Chen L., Chen S. // Chem. Commun. 2012. Vol. 48. N 21. P. 2692. doi: 10.1039/c2cc17769b
- Zhang X., Ming H., Liu R., Han X., Kang Z., Liu Y., Zhang Y. // Mater. Res. Bull. 2013. Vol. 48. N 2. P. 790. doi: 10.1016/j.materresbull.2012.11.056
- Mohammed L.J., Omer K.M. // Sci. Rep. 2020. Vol. 10. N 1. P. 3028. doi: 10.1038/s41598-020-59958-5
- Kalytchuk S., Wang Yu, Poláková K., Zbořil R. // ACS Appl. Mater. Interfaces. 2018. Vol. 10. P. 29902. doi: 10.1021/acsami.8b11663
- Zheng C., An X., Gong J. // RSC Adv. 2015. Vol. 5. N 41. P. 32319. doi: 10.1039/c5ra01986a
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 













