Multiple Noncovalent Binding in the Intermediates and Products of the Reaction of N,N-Dimethylformamide with Bromine
- Autores: Zarechnaya O.M.1, Mikhailov V.A.1
- 
							Afiliações: 
							- L. M. Litvinenko Institute of Physical Organic and Coal Chemistry
 
- Edição: Volume 94, Nº 1 (2024)
- Páginas: 10-28
- Seção: Articles
- URL: https://rjeid.com/0044-460X/article/view/667220
- DOI: https://doi.org/10.31857/S0044460X24010022
- EDN: https://elibrary.ru/HLXJSN
- ID: 667220
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Reaction of nonionic N,N-dimethylformamide (DMF) with bromine under controllable conditions leads to a number of ionic compounds, mainly to bis(N,N-dimethylformamide)hydrogen dibromobromate. Computations with DFT (ωB97xV/dgdzvp) were made for geometry, thermochemistry and electron configuration of products and supposed intermediates. Two labile particles [bis(N,N-dimethylformamide)hydrogen cation and dibromobromate-anion] form stable highly conductive ionic liquid that can be distilled in vacuo without losses or decomposition. A number of molecular complexes of DMF with bromine and water presumed to be intermediates of this reaction. It is a set of halogen and hydrogen bonding that provide an intramolecular binding in these complexes.
Texto integral
 
												
	                        Sobre autores
O. Zarechnaya
L. M. Litvinenko Institute of Physical Organic and Coal Chemistry
														Email: v_mikhailov@yahoo.com
				                					                																			                												                	Rússia, 							Donetsk						
V. Mikhailov
L. M. Litvinenko Institute of Physical Organic and Coal Chemistry
							Autor responsável pela correspondência
							Email: v_mikhailov@yahoo.com
				                	ORCID ID: 0000-0002-4184-1805
				                																			                												                	Rússia, 							Donetsk						
Bibliografia
- Izutsu K. Electrochemistry in Nonaqueous Solutions. Weinheim: Wiley-VCH, 2010. P. 18.
- Rudd E.J., Finkelstein M., Ross S.D. // J. Org. Chem. 1972. Vol. 37. P. 1763. doi: 10.1021/jo00976a021
- Schultz G., Hargittai I. // J. Phys. Chem. 1993. Vol. 97. P. 4966. doi: 10.1021/j100121a018
- Katayama M., Komori K., Ozutsumi K., Ohtaki H. // Z. Phys. Chem. 2009. Vol. 218. P. 659. doi: 10.1524/zpch.218.6.659.33452
- Ratajczyk P., Sobczak S., Katrusiak A. // Cryst. Growth Des. 2019. Vol. 19. P. 896. doi: 10.1021/acs.cgd.8b01452
- Shastri A., Das A.K., Krishnakumar S., Singh P.J., Raja Sekhar B.N. // J. Chem. Phys. 2017. Vol. 147. art. 224305. doi: 10.1063/1.5006126
- Sałdyka M., Mielke Z., Haupa K. // Spectrochim. Acta (A). 2018. Vol. 190. P. 423. doi: 10.1016/j.saa.2017.09.046
- Basma N., Cullen P.L., Clancy A.J., Shaffer M.S.P., Skipper N.T., Headen T.F., Howard C.A. // Mol. Phys. 2019. Vol. 117. P. 3353. doi: 10.1080/00268976.2019.1649494
- Hunter E.P.L., Lias S.G. // J. Phys. Chem. Ref. Data. 1998. Vol. 27. P. 413. doi: 10.1063/1.556018
- Meot-Ner M. // J. Am. Chem. Soс. 1984. Vol. 106. P. 278. doi: 10.1021/ja00314a003
- Adelman R.L. // J. Org. Chem. 1964. Vol. 29. P. 1837. doi: 10.1021/jo01030a041
- Cilense M.F., Benedetti A.V., Vollet D.R. // Thermochim. Acta. 1983. Vol. 63. P. 151. doi: 10.1016/0040-6031(83)80080-X
- Kuhn S.J., McIntyre J.S. // Can. J. Chem. 1965. Vol. 43. P. 995. doi: 10.1139/v65-134
- Tsubomura H., Lang R.P. // J. Am. Chem. Soc. 1961. Vol. 83. P. 2085. doi: 10.1021/ja01470a013
- Laurence C., Graton J., Berthelot M., El-Ghomari M.J. // Chem. Eur. J. 2011. Vol. 17. P. 10431. doi: 10.1002/chem.201101071
- Guiheneuf G., Abboud J.-L.M., Lachkar A. // Can. J. Chem. 1988. Vol. 66. P. 1032. doi: 10.1139/v88-171
- Matsui Y., Date Y. // Bull. Chem. Soc. Japan. 1970. Vol. 43. P. 2828. doi: 10.1246/bcsj.43.2828
- Yao Y., Zhao K., Zhuang Y., Chen X., Lu Y., Liu Y. // Chem. Open. 2022. Vol. 11. e202100301. doi: 10.1002/open.202100301
- Orefice M., Eldosouky A., Škulj I., Binnemans K. // RSC Adv. 2019. Vol. 9. P. 14910. doi: 10.1039/C9RA01696A
- Михайлов В.А. // Укр. хим. ж. 1990. Vol. 56. P. 765.
- Bader R.F.W. // J. Phys. Chem. (A). 1998. Vol. 102. P. 7314. doi: 10.1021/jp981794v
- Espinosa E., Alkorta I., Elguero J., Molins E. // J. Chem. Phys. 2002. Vol. 117. P. 5529. doi: 10.1063/1.1501133
- Boto R.A., Contreras-García J., Tierny J., Piquemal J.-P. // Mol. Phys. 2015. P. 1. doi: 10.1080/00268976.2015.1123777
- Politzer P., Murray J. In: Chemical Reactivity in Confined Systems / Eds P.K. Chattaraj, D. Chakraborty. Wiley, 2021. P. 113. doi: 10.1002/9781119683353.ch7
- Becke A.D., Edgecombe K.E. // J. Chem. Phys. 1990. Vol. 92. P. 5397. doi: 10.1063/1.458517
- Schmider H.L., Becke A.D. // J. Mol. Struct. 2000. Vol. 527. P. 51. doi: 10.1016/S0166-1280(00)00477-2
- Koch U., Popelier P.L.A. // J. Phys. Chem. 1995. Vol. 99. P. 9747. doi: 10.1021/j100024a016
- Mata I., Alkorta I., Espinosa E., Molins E. // Chem. Phys. Lett. 2011. Vol. 507. P. 185. doi: 10.1016/j.cplett.2011.03.055
- Matta C.F., Hernández-Trujillo J., Tang T., Bader R.F.W. // Chem. Eur. J. 2003. Vol. 9. P. 1940. doi: 10.1002/chem.200204626
- Della Porta P., Zanasi R., Monaco G. // J. Comput. Chem. 2015. Vol. 36. P. 707. doi: 10.1002/jcc.23841
- Silvi B., Alikhani M.E., Ratajchak H. // J. Mol. Model. 2020. Vol. 26. art.62. doi: 10.1007/s00894-019-4283-1
- Alkorta I., Silva A.F., Popelier P.L.A. // Molecules. 2020. Vol. 25. art. 2674. doi: 10.3390/molecules25112674
- Kazama H., Tsushima S., Takao K. // Cryst. Growth Des. 2019. Vol. 19. P. 6048. doi: 10.1021/acs.cgd.9b01214
- Дорохова Т.В., Михайлов В.А., Каниболоцкий А.Л., Прокопьева Т.М., Савелова В.А., Попов А.Ф. // ТЭХ. 2008. Т. 44. С. 298; Dorokhova T.V., Mikhailov V.A., Kanibolotskii A.L., Prokop’eva T.M., Savelova V.A., Popov A.F. // Theor. Exp. Chem. 2008, Vol. 44. P. 307. doi: 10.1007/s11237-008-9042-9
- Ruasse M.-F., Aubard J., Galland B., Adenier A. // J. Phys. Chem. 1986. Vol. 90. P. 4382. doi: 10.1021/j100409a034
- Zundel G. // Angew. Chem. Int. Ed. 1969. Vol. 8. P. 499. doi: 10.1002/anie.196904991
- Fuoss R.M., Kraus C.A. // J. Am. Chem. Soc. 1933. Vol. 55. P. 476. doi: 10.1021/ja01329a006
- Agmon N., Bakker H.J., Campen R.K., Henchman R.H., Pohl P., Roke S., Thamer M., Hassanali A. // Chem. Rev. 2016. Vol. 116. P. 7642. doi: 10.1021/acs.chemrev.5b00736
- Haller H., Ellwanger M., Higelin A., Riedel S. // Angew. Chem. Int. Ed. 2011. Vol. 50. P. 11528. doi: 10.1002/anie.201105237
- Gully T.A., Voßnacker P., Schmid J.R., Beckers H., Riedel S. // ChemistryOpen. 2021. Vol. 10. P. 255. doi: 10.1002/open.202000263
- Yuan W., Yang X., He L., Xue Y., Qin S., Tao G. // Front. Chem. 2018. Vol. 6. Art. 59. doi: 10.3389/fchem.2018.00059
- Perkins C.W., Martin J.C., Arduengo A.J., Lau W., Alegria A., Kochi J.K. // J. Am. Chem. Soc. 1980. Vol. 102. P. 7753. doi: 10.1021/ja00546a019
- Ivlev S.I., Gaul K., Chen M., Karttunen A.J., Berger R., Kraus F. // Chem. Eur. J. 2019. Vol. 25. P. 5793. doi: 10.1002/chem.201900442
- Alder R.W., Blake M.E., Bufali S., Butts C.P., Orpen A.G., Schütz J., Williams S.J. // J. Chem. Soc. Perkin Trans. 1. 2001. Vol. 14. P. 1586. doi: 10.1039/B104110J
- Wlodarczyk J.K., Küttinger M., Friedrich A.K., Schumacher J.O. // J. Power Sources. 2021. Vol. 508, art. 230202. doi: 10.1016/j.jpowsour.2021.230202
- Xu Y., Xie C., Li X. // Trans. Tianjin Univ. 2022. Vol. 28. P. 186. doi: 10.1007/s12209-022-00327-w
- Huber K.P., Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. New York: Van Nostrand Reinhold Co., 1979.
- Powell B.M., Heal K.M., Torrie B.H. // Mol. Phys. 1984. Vol. 53. P. 929. doi: 10.1080/00268978400102741
- Császár A.G., Czakó G., Furtenbacher T., Tennyson J., SzalayV., Shirin S.V., Zobov N.F., Polyansky O.L. // J. Chem. Phys. 2005. Vol. 122. Art. no. 214305. doi: 10.1063/1.1924506
- Graner G., Rossetti C., Bailly D. // Mol. Phys. 1986. Vol. 58. P. 627. doi: 10.1080/00268978600101431
- Nemec V., Fotović L., Vitasović T., Cinčić D. // CrystEngComm. 2019. Vol. 21. P. 3251. doi: 10.1039/C9CE00340A
- Jones R.H., Knight K.S., Marshall W.G., Coles S.J., Horton P.N., Pitak M.B. // CrystEngComm. 2013. Vol. 15. P. 8572. doi: 10.1039/C3CE41472H
- Suponitsky K.Yu., Burakov N.I., Кanibolotsky A.L., Mikhailov V.A. // J. Phys. Chem. (A). 2016. Vol. 120. P. 4179. doi: 10.1021/acs.jpca.6b02192
- Zarechnaya O.M., Anisimov A.A., Belov E.Yu., Burakov N.I., Kanibolotsky A.L., Mikhailov V.A. // RSC Adv. 2021. Vol. 11. P. 6131. doi: 10.1039/D0RA08165E
- Saunders L.K., Pallipurath A.R., Gutmann M.J., Nowell H., Zhang N., Allan D.R. // CrystEngComm. 2021. Vol. 23. P. 6180. doi: 10.1039/D1CE00355K
- Pichierri F. // Chem. Phys. Lett. 2011. Vol. 515. P. 116. doi: 10.1016/j.cplett.2011.09.003
- Boer F.P. // J. Am. Chem. Soc. 1966. Vol. 88. P. 1572. doi: 10.1021/ja00959a059
- Hussain M.S., Schlemper E.O. // J. Chem. Soc. Dalton Trans. 1980. Vol. 35. P. 750. doi: 10.1039/DT9800000750
- Stuart D., Wetmore S.D., Gerken M. // Angew. Chem. 2017. Vol. 129. P. 16598. doi: 10.1002/ange.201710263
- Allen F.H., Watson D.G., Brammer L., Orpen A.G., Taylor R. // Int. Tables Cryst. 2006. Vol. C. P. 790. doi: 10.1107/97809553602060000621
- Molčanov K., Jelsch C., Wenger E., Stare J., Madsen A.Ø., Kojić-Prodić B. // CrystEngComm. 2017. Vol. 19. P. 3898. doi: 10.1039/C7CE00501F
- Keil H., Sonnenberg K., Muller C., Herbst-Irmer R., Beckers H., Riedel S., Stalke D. // Angew. Chem. Int. Ed. 2021. Vol. 60. P. 2569. doi: 10.1002/anie.202013727
- Sonnenberg K., Mann L., Redeker F.A., Schmidt B., Riedel S. // Angew. Chem. Int. Ed. 2020. Vol. 59. P. 5464. doi: 10.1002/anie.201903197.
- Nizzi K. E., Pommerenning C.A., Sunderlin L. // J. Phys. Chem. (A). 1998. Vol. 102. P. 7674. doi: 10.1021/JP9824508
- Christe K.O., Bau R., Zhao D. // Z. anorg. allg. Chem. 1991. Vol. 593. P. 46. doi: 10.1002/Zaac.19915930106
- Wang H., Liu H., Wang M., Huang M., Shi X., Wang T., Cong X., Yan J., Wu J.// Iscience. 2021. Vol. 24. N. 6. Art. 102693. doi: 10.1016/j.isci.2021.102693
- Saikia I., Borah A.J., Phukan P. // Chem. Rev. 2016. Vol. 116. P. 6837. doi: 10.1021/acs.chemrev.5b00400
- Beato E.P., Mazzarella D., Balletti M., Melchiorre P. // Chem. Sci. 2020. Vol. 11. P. 6312. doi: 10.1039/D0SC02313B
- Talukdar R. // Org. Biomol. Chem. 2020. Vol. 18. P. 8294. doi: 10.1039/D0OB01652G
- Mayer J.M. // J. Am. Chem. Soc. 2023. Vol. 145. P. 7050. doi.org/10.1021/jacs.2c10212
- Lowry T.H., Richardson K.S. Mechanism and Theory in Organic Chemistry. HarperCollins, 1987. P. 425.
- Zabolotniy A.A., Trush E.N., Zarechnaya O.M., Mikhailov V.A. // J. Ionic Liq. 2022. Vol. 2. Art. 100045. doi: 10.1016/j.jil.2022.100045
- Juillard J. In: Recommended Methods for Purification of Solvents and Tests for Impurities / Ed. J.F. Coetzee. Pergamon, 1982.
- Neese F., Wennmohs F., Becker U., Riplinger C. // J. Chem. Phys. 2020. Vol. 152. Art. 224108. doi: 10.1063/5.0004608
- Godbout N., Salahub D.R., Andzelm, J., Wimmer E. // Can. J. Chem. 1992. Vol. 70. P. 560. doi: 10.1139/v92-079
- Mardirossian N., Head-Gordon M. // Phys. Chem. Chem. Phys. 2014. Vol. 16. P. 9904. doi: 10.1039/C3CP54374A
- Vydrov O.A., Van Voorhis T. // J. Chem. Phys. 2010. Vol. 133. Art. 244103. doi: 10.1063/1.3521275.
- Pritchard B.P., Altarawy D., Didier B.T., Gibson T.D., Windus T.L. // J. Chem. Inf. Model. 2019. Vol. 59. P. 4814. doi: 10.1021/acs.jcim.9b00725; www.basissetexchange.org
- Goerigk L., Hansen A., Bauer C., Ehrlich S., Najibi A., Grimme S. // Phys. Chem. Chem. Phys. 2017. Vol. 19. P. 32184. doi: 10.1039/C7CP04913G
- Goerigk L., Mehta N. // Aus. J. Chem. 2019. Vol. 72. P. 563. doi: 10.1071/CH19023
- Lu T., Chen F. // J. Comput. Chem. 2012. Vol. 33. P. 580. doi: 10.1002/jcc.22885
- Zhang J., Lu T. // Phys. Chem. Chem. Phys. 2021. Vol. 23. P. 20323. doi: 10.1039/D1CP02805G
- Lu T. // J. Mol. Model. 2021. Vol. 27. P. 263. doi: 10.1007/s00894-021-04884-0
- Humphrey W., Dalke A., Schulten K. // J. Mol. Graphics. 1996. Vol. 14. P. 33. doi: 10.1016/0263-7855(96)00018-5
- Macrae C.F., Sovago I., Cottrell S.J., Galek P.T.A., McCabe P., Pidcock E., Platings M., Shields G.P., Stevens J.S., Towler M., Wood P.A. // J. Appl. Cryst. 2020. Vol. 53. P. 226. doi: 10.1107/S1600576719014092
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 










