Development of a reproducible and scalable method for the synthesis of biologically active pyrazolo[1,5-a]pyrimidine derivatives
- Autores: Novikova D.S1, Darwish F.1, Grigoreva T.A1, Tribulovich V.G1
- 
							Afiliações: 
							- St. Petersburg State Institute of Technology (Technical University)
 
- Edição: Volume 93, Nº 5 (2023)
- Páginas: 684-694
- Seção: Articles
- URL: https://rjeid.com/0044-460X/article/view/666989
- DOI: https://doi.org/10.31857/S0044460X23050049
- EDN: https://elibrary.ru/DBOQGZ
- ID: 666989
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A reproducible and scalable method for the synthesis was developed, and a series of 3,6-substituted pyrazolo[1,5- a ]pyrimidines, which are the basis for the rational design of selective inhibitors of AMP-activated protein kinase, was obtained and characterized. In the course of the formation of new types of carbon skeleton, the possibility of applying Suzuki-Miyaura cross-coupling with Buchwald ligands to form C-C bond in the sterically hindered position 6 of 5,7-dimethyl-substituted pyrazolo[1,5- a ]pyrimidine was shown.
			                Palavras-chave
Sobre autores
D. Novikova
St. Petersburg State Institute of Technology (Technical University)
														Email: dc.novikova@gmail.com
				                					                																			                												                														
F. Darwish
St. Petersburg State Institute of Technology (Technical University)
T. Grigoreva
St. Petersburg State Institute of Technology (Technical University)
V. Tribulovich
St. Petersburg State Institute of Technology (Technical University)
Bibliografia
- Trefts E., Shaw R.J. // Mol. Cell. 2021. Vol. 81. N 18. P. 3677. doi: 10.1016/j.molcel.2021.08.015
- Tarasiuk O., Miceli M., Di Domizio A., Nicolini G. // Biology. 2022. Vol. 11. N 7. P. 1041. doi: 10.3390/biology11071041
- Новикова Д.С., Гарабаджиу А.В., Мелино Дж., Барлев Н.А., Трибулович В.Г. // Изв. АН. Сер. хим. 2015. № 7. С. 1497
- Novikova D.S., Garabadzhiu A.V., Melino G., Barlev N.A., Tribulovich V.G. // Russ. Chem. Bull. 2015. Vol. 64. N 7. P. 1497. doi: 10.1007/s11172-015-1036-x
- Russell F.M., Hardie D.G. // Int. J. Mol. Sci. 2021. Vol. 22. N 1. P. 186. doi: 10.3390/ijms22010186
- Novikova D.S., Grigoreva T.A., Ivanov G.S., Barlev N.A., Tribulovich V.G. // ChemMedChem. 2020. Vol. 15. N 24. P. 2521. doi: 10.1002/cmdc.202000579
- Novikova D.S., Grigoreva T.A., Zolotarev A.A., Garabadzhiu, A.V., Tribulovich, V.G. // RSC Adv. 2018. Vol. 8. N 60., P. 34543. doi: 10.1039/C8RA07576J
- Dasgupta B., Seibel W. // Methods Mol. Biol. 2018. Vol. 1732. P. 195. doi: 10.1007/978-1-4939-7598-3_12
- Dite T.A., Langendorf C.G., Hoque A., Galic S., Rebello R.J., Ovens A.J., Lindqvist L.M., Ngoei K.R.W., Ling N.X.Y., Furic L., Kemp B.E., Scott J.W., Oakhill J.S. // J. Biol. Chem. 2018. Vol. 293. N 23. P. 8874. doi: 10.1074/jbc.RA118.003547
- Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M.F., Goodyear L.J., Moller D.E. // J. Clin. Invest. 2001. Vol. 108. N 8. P. 1167. doi: 10.1172/JCI13505
- Fraley M.E., Rubino R.S., Hoffman W.F., Hambaugh S.R., Arrington K.L., Hungate R.W., Bilodeau M.T., Tebben A.J., Rutledge R.Z., Kendall R.L., McFall R.C., Huckle W.R., Coll K.E., Thomas K.A. // Bioorg. Med. Chem. Lett. 2002. Vol. 12. N 24. P. 3537. doi: 10.1016/s0960-894x(02)00827-2
- Cuny G.D., Yu P.B., Laha J.K., Xing X., Liu J.F., Lai C.S., Deng D.Y., Sachidanandan C., Bloch K.D., Peterson R.T. // Bioorg. Med. Chem. Lett. 2008. Vol. 18. N 15. P. 4388. doi: 10.1016/j.bmcl.2008.06.052
- Cherukupalli S., Karpoormath R., Chandrasekaran B., Hampannavar G.A., Thapliyal N., Palakollu V.N. // Eur. J. Med. Chem. 2017. Vol. 126. P. 298. doi: 10.1016/j.ejmech.2016.11.019
- Arias-Gómez A., Godoy A., Portilla J. // Molecules. 2021. Vol. 26. N 9. P. 2708. doi: 10.3390/molecules26092708
- Moszczyński-Pętkowski R., Majer J., Borkowska M., Bojarski Ł., Janowska S., Matłoka M., Stefaniak F., Smuga D., Bazydło K., Dubiel K., Wieczorek M. // Eur. J. Med. Chem. 2018. Vol. 155. P. 96. doi: 10.1016/j.ejmech.2018.05.043
- Prasanth C.P., Ebbin J., Abhijith A., Nair D.S., Ibnusaud I., Raskatov J., Singaram B. // J. Org. Chem. 2018. Vol. 83. N 3. P. 1431. doi: 10.1021/acs.joc.7b02993
- Rüger N., Roatsch M., Emmrich T., Franz H., Schüle R., Jung M., Link A. // ChemMedChem. 2015. Vol. 10. N 11. P. 1875. doi: 10.1002/cmdc.201500335
- Kaushik M.P., Vaidyanathaswamy R. // Phosphorus, Sulfur, Silicon, Relat. Elem. 1995. Vol. 102. N 1-4. P. 45. doi: 10.1080/10426509508042541
- Borne R.F., Aboul-Enein H.Y. // J. Heterocycl. Chem. 1980. Vol. 17. N 7. P. 1609. doi: 10.1002/jhet.5570170753
- Demchuk O.P., Hryshchuk O.V., Vashchenko B.V., Radchenko D.S., Kovtunenko V.O., Komarov I.V., Grygorenko O.O. // Eur. J. Org. Chem. 2019. Vol. 2019. N 34. P. 5937. doi: 10.1002/ejoc.201901001
- Trofimenko S. // J. Org. Chem. 1963. Vol. 28. N 11. P. 3243. doi: 10.1021/jo01046a526
- Tomsho J.W., McGuireb J.J., Coward J.K. // Org. Biomol. Chem. 2005. Vol. 3. N 18. P. 3388. doi: 10.1039/B505907K
- Chen H.J., Chew C.Y., Chang E.H., Tu Y.W., Wei L.Y., Wu B.H., Chen C.H., Yang Y.T., Huang S.C., Chen J.K., Chen I.C., Tan K.T. // J. Am. Chem. Soc. 2018. Vol. 140. N 15. P. 5224. doi: 10.1021/jacs.8b01159
- Tribulovich V.G., Garabadzhiu A.V., Kalvin'sh I. // Pharm. Chem. J. 2011. Vol. 45. N 4. P. 241. doi: 10.1007/s11094-011-0605-z
- Barder T.E., Walker S.D., Martinelli J.R., Buchwald S.L. // J. Am. Chem. Soc. 2005. Vol. 127. N 13. P. 4685. doi: 10.1021/ja042491j
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
