Investigation of strategies for the interclass prediction of the activity of bipharmacophore butyrylcholinesterase inhibitors based on QSAR modeling
- Authors: Grigorev V.Y.1, Razdolsky A.N.1, Kazachenko V.P.1
- 
							Affiliations: 
							- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
 
- Issue: Vol 94, No 10 (2024)
- Pages: 1058-1068
- Section: Articles
- URL: https://rjeid.com/0044-460X/article/view/676662
- DOI: https://doi.org/10.31857/S0044460X24100058
- EDN: https://elibrary.ru/REXKZX
- ID: 676662
Cite item
Abstract
Three schemes of interclass prediction of the activity of a number of bipharmacophoric butyrylcholinesterase inhibitors were studied using QSAR modeling. Using machine learning methods (multiple linear regression, random forest, support vector machine and Gaussian process), QSAR models with satisfactory statistical characteristics were constructed. Based on them, rational and random interclass prediction schemes were studied. It was found that these schemes complement each other and their relative efficiency was assessed.
Keywords
Full Text
 
												
	                        About the authors
V. Y. Grigorev
Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
							Author for correspondence.
							Email: beng@ipac.ac.ru
				                	ORCID iD: 0000-0002-5288-3242
				                																			                												                	Russian Federation, 							142432, Chernogolovka						
A. N. Razdolsky
Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: beng@ipac.ac.ru
				                	ORCID iD: 0000-0002-3389-4659
				                																			                												                	Russian Federation, 							142432, Chernogolovka						
V. P. Kazachenko
Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: beng@ipac.ac.ru
				                	ORCID iD: 0000-0003-1424-1895
				                																			                												                	Russian Federation, 							142432, Chernogolovka						
References
- Schlander M., Hernandez-Villafuerte K., Cheng C.Y., Mestre-Ferrandiz J., Baumann M. // Pharmacoeconomics. 2021. Vol. 39. P. 1243. doi: 10.1007/s40273-021-01065-y
- Sadybekov A.V., Katritch V. // Nature. 2023. Vol. 616. P. 673. doi: 10.1038/s41586-023-05905-z
- Doytchinova I. // Molecules. 2022. Vol. 27. P. 1496. doi: 10.3390/molecules27051496
- Niazi S.K., Mariam Z. // Pharmaceuticals. 2024. Vol. 17. P. 22. doi: 10.3390/ph17010022
- Baig M.H., Ahmad K., Roy S., Ashraf J.M., Adil M., Siddiqui M.H., Khan S., Kamal M.A., Provazník I., Choi I. // Curr. Pharm. Des. 2016. Vol. 22. P. 572. doi 10.2174/ 1381612822666151125000550
- Зефирова О.Н., Зефиров Н.С. // Вестн. Московск. унив. Сер. 2. Химия. 2000. Т. 41. С. 103.
- Hu Y., Stumpfe D., Bajorath J. // J. Med. Chem. 2017. Vol. 60. P. 1238. doi: 10.1021/acs.jmedchem.6b01437
- Stojanović L., Popović M., Tijanić N., Rakočević G., Kalinić M. // J. Chem. Inf. Model. 2020. Vol. 60. P. 4629. doi: 10.1021/acs.jcim.0c00622
- Acharya A., Yadav M., Nagpure M., Kumaresan S., Guchhait S.K. // Drug Discov. Today. 2024. Vol. 29. Article no. 103845. doi: 10.1016/j.drudis.2023.103845
- Wang Y., Jia S., Wang F., Jiang R., Yin X., Wang S., Jin R., Guo H., Tang Y., Wang Y. // Int. J. Mol. Sci. 2024. Vol. 25. Article no. 7434. doi: 10.3390/ijms25137434
- Floresta G., Rescifina A., Marrazzo A., Dichiara M., Pistarà V., Pittalà V., Prezzavento O., Amata E. // Eur. J. Med. Chem. 2017. Vol. 139. P. 884. doi 10.1016/ j.ejmech.2017.08.053
- Škuta C., Cortés-Ciriano I., Dehaen W., Kříž P., van Westen G.J.P., Tetko I.V., Bender A., Svozil D. // J. Cheminform. 2020. Vol. 12. P. 39. doi: 10.1186/s13321-020-00443-6
- Zheng S., Lei Z., Ai H., Chen H., Deng D., Yang Y. // J. Cheminform. 2021. Vol. 13. P. 87. doi: 10.1186/s13321-021-00565-5
- Ryszkiewicz P., Malinowska B., Schlicker E. // Pharmacol. Rep. 2023. Vol. 75. P. 755. doi: 10.1007/s43440-023-00501-4
- Sánchez-Tejeda J.F., Sánchez-Ruiz J.F., Salazar J.R., Loza-Mejía M.A. // Front. Chem. 2020. Vol. 8. P. 176. doi: 10.3389/fchem.2020.00176
- Albertini C., Salerno A., de Sena Murteira Pinheiro P., Bolognesi M.L. // Med. Res. Rev. 2021. Vol. 41. P. 2606. doi: 10.1002/med.21699
- Zhou S., Huang G. // Biomed. Pharmacother. 2022. Vol. 146. Article no. 112556. doi: 10.1016/j.biopha. 2021.112556
- Greig N.H., Lahiri D.K., Sambamurti K. // Int. Psychogeriatr. 2002. Vol. 14. P. 77. doi: 10.1017/s1041610203008676
- Makhaeva G.F., Shevtsova E.F., Boltneva N.P., Lushchekina S.V., Kovaleva N.V., Rudakova E.V., Bachurin S.O., Rudy J. Richardson R.J. // Chem. Biol. Interact. 2019. Vol. 308. P. 224. doi: 10.1016/j.cbi.2019.05.020
- Bachurin S.O., Makhaeva G.F., Shevtsova E.F., Aksinenko A.Y., Grigoriev V.V., Shevtsov P.N., Goreva T.V., Epishina T.A., Kovaleva N.V., Pushkareva E.A., Boltneva N.P., Lushchekina S.V., Gabrelyan A.V., Zamoyski V.L., Dubova L.G., Rudakova E.V., Fisenko V.P., Bovina E.V., Richardson R.J. // Molecules. 2021. Vol. 26. P. 5527. doi: 10.3390/molecules26185527
- Kiralj R., Ferreira M.M.C. // J. Braz. Chem. Soc. 2009. Vol. 20. P. 770. doi: 10.1590/S0103-50532009000400021
- Tropsha A., Gramatica P., Gombar V.K. // QSAR Comb. Sci. 2003. Vol. 22. P. 69. doi: 10.1002/qsar.200390007
- Kumar S., Manoharan A., Jayalakshmi J., Abdelgawad M.A., Mahdi W.A., Alshehri S., Ghoneim M.M., Pappachen L.K., Zachariah S.M., Aneesh T.P., Mathew B. // RSC Adv. 2023.Vol. 13. P. 9513. doi: 10.1039/d3ra00526g
- Pang X., Fu H., Yang S., Wang L., Liu A.-L., Wu S., Du G.-H. // Molecules. 2017. Vol. 22. P. 1254. doi: 10.3390/molecules22081254
- Fortran Numerical Library. https://developer.nvidia.com/imsl-fortran-numerical-library?display=default
- Random Forest. http://www.stat.berkeley.edu/~breiman/RandomForests/cc_examples/prog.f
- Suykens J.A.K., Vandewalle J. // Neural Process. Lett. 1999. Vol. 9. P. 293. doi: 10.1023/A:1018628609742
- Gaussian Processes for Machine Learning. http://gaussianprocess.org/gpml/
- Landrum G.A., Riniker S. // J. Chem. Inf. Model. 2024. Vol. 64. P. 1560. doi: 10.1021/acs.jcim.4c00049
- Mitra I., Saha A., Roy K. // Mol. Simul. 2010. Vol. 36. P. 1067. doi: 10.1080/08927022.2010.503326
- Kubinyi H. // Quant. Struct. Act. Relat. 1994. Vol. 13. P. 285. doi: 10.1002/qsar.19940130306
- Willett P., Barnard J.M., Downs G.M. // J. Chem. Inf. Comput. Sci. 1998. Vol. 38. P. 983. doi: 10.1021/ci9800211
- Раздольский А.Н., Казаченко В.П., Страхова Н.Н., Григорьев В.Ю. // Современные наукоемкие технологии. 2023. Вып. 10. С. 63. doi: 10.17513/snt.39792
- Trepalin S.V., Razdolskii A.N., Raevskii O.A. // Pharm. Chem. J. 2000. Vol. 34. P. 650. doi 10.1023/ A:1010499601434
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted






