Investigation of strategies for the interclass prediction of the activity of bipharmacophore butyrylcholinesterase inhibitors based on QSAR modeling
- Autores: Grigorev V.Y.1, Razdolsky A.N.1, Kazachenko V.P.1
- 
							Afiliações: 
							- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
 
- Edição: Volume 94, Nº 10 (2024)
- Páginas: 1058-1068
- Seção: Articles
- URL: https://rjeid.com/0044-460X/article/view/676662
- DOI: https://doi.org/10.31857/S0044460X24100058
- EDN: https://elibrary.ru/REXKZX
- ID: 676662
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Three schemes of interclass prediction of the activity of a number of bipharmacophoric butyrylcholinesterase inhibitors were studied using QSAR modeling. Using machine learning methods (multiple linear regression, random forest, support vector machine and Gaussian process), QSAR models with satisfactory statistical characteristics were constructed. Based on them, rational and random interclass prediction schemes were studied. It was found that these schemes complement each other and their relative efficiency was assessed.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
V. Grigorev
Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: beng@ipac.ac.ru
				                	ORCID ID: 0000-0002-5288-3242
				                																			                												                	Rússia, 							142432, Chernogolovka						
A. Razdolsky
Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: beng@ipac.ac.ru
				                	ORCID ID: 0000-0002-3389-4659
				                																			                												                	Rússia, 							142432, Chernogolovka						
V. Kazachenko
Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
														Email: beng@ipac.ac.ru
				                	ORCID ID: 0000-0003-1424-1895
				                																			                												                	Rússia, 							142432, Chernogolovka						
Bibliografia
- Schlander M., Hernandez-Villafuerte K., Cheng C.Y., Mestre-Ferrandiz J., Baumann M. // Pharmacoeconomics. 2021. Vol. 39. P. 1243. doi: 10.1007/s40273-021-01065-y
- Sadybekov A.V., Katritch V. // Nature. 2023. Vol. 616. P. 673. doi: 10.1038/s41586-023-05905-z
- Doytchinova I. // Molecules. 2022. Vol. 27. P. 1496. doi: 10.3390/molecules27051496
- Niazi S.K., Mariam Z. // Pharmaceuticals. 2024. Vol. 17. P. 22. doi: 10.3390/ph17010022
- Baig M.H., Ahmad K., Roy S., Ashraf J.M., Adil M., Siddiqui M.H., Khan S., Kamal M.A., Provazník I., Choi I. // Curr. Pharm. Des. 2016. Vol. 22. P. 572. doi 10.2174/ 1381612822666151125000550
- Зефирова О.Н., Зефиров Н.С. // Вестн. Московск. унив. Сер. 2. Химия. 2000. Т. 41. С. 103.
- Hu Y., Stumpfe D., Bajorath J. // J. Med. Chem. 2017. Vol. 60. P. 1238. doi: 10.1021/acs.jmedchem.6b01437
- Stojanović L., Popović M., Tijanić N., Rakočević G., Kalinić M. // J. Chem. Inf. Model. 2020. Vol. 60. P. 4629. doi: 10.1021/acs.jcim.0c00622
- Acharya A., Yadav M., Nagpure M., Kumaresan S., Guchhait S.K. // Drug Discov. Today. 2024. Vol. 29. Article no. 103845. doi: 10.1016/j.drudis.2023.103845
- Wang Y., Jia S., Wang F., Jiang R., Yin X., Wang S., Jin R., Guo H., Tang Y., Wang Y. // Int. J. Mol. Sci. 2024. Vol. 25. Article no. 7434. doi: 10.3390/ijms25137434
- Floresta G., Rescifina A., Marrazzo A., Dichiara M., Pistarà V., Pittalà V., Prezzavento O., Amata E. // Eur. J. Med. Chem. 2017. Vol. 139. P. 884. doi 10.1016/ j.ejmech.2017.08.053
- Škuta C., Cortés-Ciriano I., Dehaen W., Kříž P., van Westen G.J.P., Tetko I.V., Bender A., Svozil D. // J. Cheminform. 2020. Vol. 12. P. 39. doi: 10.1186/s13321-020-00443-6
- Zheng S., Lei Z., Ai H., Chen H., Deng D., Yang Y. // J. Cheminform. 2021. Vol. 13. P. 87. doi: 10.1186/s13321-021-00565-5
- Ryszkiewicz P., Malinowska B., Schlicker E. // Pharmacol. Rep. 2023. Vol. 75. P. 755. doi: 10.1007/s43440-023-00501-4
- Sánchez-Tejeda J.F., Sánchez-Ruiz J.F., Salazar J.R., Loza-Mejía M.A. // Front. Chem. 2020. Vol. 8. P. 176. doi: 10.3389/fchem.2020.00176
- Albertini C., Salerno A., de Sena Murteira Pinheiro P., Bolognesi M.L. // Med. Res. Rev. 2021. Vol. 41. P. 2606. doi: 10.1002/med.21699
- Zhou S., Huang G. // Biomed. Pharmacother. 2022. Vol. 146. Article no. 112556. doi: 10.1016/j.biopha. 2021.112556
- Greig N.H., Lahiri D.K., Sambamurti K. // Int. Psychogeriatr. 2002. Vol. 14. P. 77. doi: 10.1017/s1041610203008676
- Makhaeva G.F., Shevtsova E.F., Boltneva N.P., Lushchekina S.V., Kovaleva N.V., Rudakova E.V., Bachurin S.O., Rudy J. Richardson R.J. // Chem. Biol. Interact. 2019. Vol. 308. P. 224. doi: 10.1016/j.cbi.2019.05.020
- Bachurin S.O., Makhaeva G.F., Shevtsova E.F., Aksinenko A.Y., Grigoriev V.V., Shevtsov P.N., Goreva T.V., Epishina T.A., Kovaleva N.V., Pushkareva E.A., Boltneva N.P., Lushchekina S.V., Gabrelyan A.V., Zamoyski V.L., Dubova L.G., Rudakova E.V., Fisenko V.P., Bovina E.V., Richardson R.J. // Molecules. 2021. Vol. 26. P. 5527. doi: 10.3390/molecules26185527
- Kiralj R., Ferreira M.M.C. // J. Braz. Chem. Soc. 2009. Vol. 20. P. 770. doi: 10.1590/S0103-50532009000400021
- Tropsha A., Gramatica P., Gombar V.K. // QSAR Comb. Sci. 2003. Vol. 22. P. 69. doi: 10.1002/qsar.200390007
- Kumar S., Manoharan A., Jayalakshmi J., Abdelgawad M.A., Mahdi W.A., Alshehri S., Ghoneim M.M., Pappachen L.K., Zachariah S.M., Aneesh T.P., Mathew B. // RSC Adv. 2023.Vol. 13. P. 9513. doi: 10.1039/d3ra00526g
- Pang X., Fu H., Yang S., Wang L., Liu A.-L., Wu S., Du G.-H. // Molecules. 2017. Vol. 22. P. 1254. doi: 10.3390/molecules22081254
- Fortran Numerical Library. https://developer.nvidia.com/imsl-fortran-numerical-library?display=default
- Random Forest. http://www.stat.berkeley.edu/~breiman/RandomForests/cc_examples/prog.f
- Suykens J.A.K., Vandewalle J. // Neural Process. Lett. 1999. Vol. 9. P. 293. doi: 10.1023/A:1018628609742
- Gaussian Processes for Machine Learning. http://gaussianprocess.org/gpml/
- Landrum G.A., Riniker S. // J. Chem. Inf. Model. 2024. Vol. 64. P. 1560. doi: 10.1021/acs.jcim.4c00049
- Mitra I., Saha A., Roy K. // Mol. Simul. 2010. Vol. 36. P. 1067. doi: 10.1080/08927022.2010.503326
- Kubinyi H. // Quant. Struct. Act. Relat. 1994. Vol. 13. P. 285. doi: 10.1002/qsar.19940130306
- Willett P., Barnard J.M., Downs G.M. // J. Chem. Inf. Comput. Sci. 1998. Vol. 38. P. 983. doi: 10.1021/ci9800211
- Раздольский А.Н., Казаченко В.П., Страхова Н.Н., Григорьев В.Ю. // Современные наукоемкие технологии. 2023. Вып. 10. С. 63. doi: 10.17513/snt.39792
- Trepalin S.V., Razdolskii A.N., Raevskii O.A. // Pharm. Chem. J. 2000. Vol. 34. P. 650. doi 10.1023/ A:1010499601434
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







