Synthesis of Zinc Sulfide Nanoparticles Using Pyridinium Ionic Liquids
- Authors: Zhuravlev O.E1, Rasskazova N.Y.1, Suratova E.S1, Karpenkov A.Y.1
- 
							Affiliations: 
							- Tver State University
 
- Issue: Vol 93, No 2 (2023)
- Pages: 301-307
- Section: Articles
- URL: https://rjeid.com/0044-460X/article/view/667112
- DOI: https://doi.org/10.31857/S0044460X23020166
- EDN: https://elibrary.ru/QCOGBW
- ID: 667112
Cite item
Abstract
Zinc sulfide nanoparticles (quantum dots) were synthesized from aqueous solutions of sodium sulfide and zinc sulfate using pyridinium ionic liquids. The average sizes of zinc sulfide nanoparticles were determined by UV spectroscopy, X-ray diffraction, probe and scanning electron microscopy. The influence of the structure and concentration of pyridinium ionic liquids with the tetrafluoroborate anion of the same name on the size of zinc sulfide nanoparticles has been studied. The effect of the precursor concentration on the size of the nanoparticles formed in the ash was established.
			                Keywords
About the authors
O. E Zhuravlev
Tver State University
														Email: pifchem@mail.ru
				                					                																			                												                														
N. Yu. Rasskazova
Tver State University
E. S Suratova
Tver State University
A. Yu. Karpenkov
Tver State University
References
- Ning J., Men K., Xiao G., Wang L., Dai Q., Zou B., Liu B., Zou G. // Nanoscale. 2010. Vol. 2 P. 1699. doi: 10.1039/C0NR00052C
- Alivisatos A.P. // Science. 1996. Vol. 271. P. 933. doi: 10.1126/science.271.5251.933
- Kindyak V.V., Koren N.N., Moiseenko V.V., Gremenok V.F. // Thin Solid Films. 1992. Vol. 207. P. 220. doi: 10.1016/0040-6090(92)90127-W
- Reddy N.K., Devika M., Gopal E. // Crit. Rev. Solid State Mater. Sci. 2015. Vol. 40. P. 359. doi: 10.1039/C7RA00041C
- Li S., Zheng J., Hu Z., Zuo S., Wu Z., Yan P., Pan F. // RSC Adv. 2015. Vol. 5. P. 72857. doi: 10.1039/C5RA14097H
- Ummartyotin S., Infahsaeng Y. // Ren. Sus. Engery Rev. 2016. Vol. 55. P. 17. doi: 10.1016/j.rser.2015.10.120
- Soltani N., Saion E., Hussein M.Z., Erfani M., Rezaee K., Bahmanrokh, G. J. // Inorg. Organomet. Polym. 2012. Vol. 22. P. 830. doi: 10.1007/s10904-011-9645-9
- Zhao Y., Hong, J.-M., Zhu J.-J. // J. Cryst. Growth. 2004. Vol. 270. P. 438. doi: 10.1016/j.jcrysgro.2004.06.036
- Ni Y., Yin G., Hong, J., Xu Z. // Mat. Res. Bull. 2004. Vol. 39. P. 1967. doi: 10.1016/j.materresbull.2004.01.011
- Borah J.P., Barman J., Sarma K.C. // Chalcogenide Lett. 2008. Vol. 5. P. 201.
- Gayou V.L., Salazar-Hernández V.L., Delgado M.R., Zavala, G., Santiago P., Oliva A.I. // J. Nano Res. 2010. Vol. 9. P. 125. doi: 10.4028/ href='www.scientific.net/JNanoR.9.125' target='_blank'>www.scientific.net/JNanoR.9.125
- Welton T. // Green Chem. 2011. Vol. 13. P. 225. doi: 10.1039/C0GC90047H
- Hallett J.P., Welton T. // Chem. Rev. 2011. Vol. 111. P. 3508. doi: 10.1021/cr1003248
- Alammar T., Shekhah O., Wohlgemuth, J., Mudring, A.-V. // J. Mater. Chem. 2012. Vol. 22. P. 18252. doi: 10.1039/C2JM32849F
- Alammar T., Smetana V., Pei H., Hamm I., Wark M., Mudring, A.-V. // Adv. Sus. Sys. 2021. Vol. 5 doi: 10.1002/adsu.202000180
- Leua M., Campbella P., Mudring A-V. // Green Chem. Let. Rev. 2021. Vol. 14. P. 128. doi: 10.1080/17518253.2021.1875057
- Schaumann J., Loor M., Ünal D., Mudring A., Heimann S., Hagemann U., Schulz S., Maculewicze F., Schierning G. // Dalton Trans. 2017. Vol. 46. P. 656. doi: 10.1039/c6dt04323b
- Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H. // Nat. Mater. 2005. Vol. 4. N 6. P. 435. doi: 10.1038/nmat1390
- Tang H., Xu G., Weng L., Pan L., Wang L. // Acta Mater. 2004. Vol. 52. P. 1489. doi: 10.1016/j.actamat.2003.11.030
- Yao W.T., Yu S.H., Wu Q.S. // Adv. Funct. Mater. 2007. Vol. 17. P. 623. doi: 10.1002/adfm.200600239
- Chen Y., Zhang X., Jia C., Su Y., Li Q. // J. Phys. Chem. C 2009. Vol. 113. N 6. P. 2263. doi: 10.1021/jp8091122
- West A.R. Solid State Chemistry and its Applications. New York: John Wiley and Sons, 2014. 592 p.
- Peddis D., Orrù F., Ardu A., Cannas C., Musinu A., Piccaluga G. // Chem. Mater. 2012. Vol. 24. N 6. P. 1062. doi: 10.1021/cm203280y
- Muscas G., Singh G., Glomm W.R., Mathieu R., Kumar P.A., Concas G., Agostinelli E., Peddis D. // Chem. Mater. 2015. Vol. 27. N 6. P. 1982. doi: 10.1021/cm5038815
- Жиленко М.П., Лупандина К.В., Эрлих Г.В., Лисичкин Г.В. // Изв. АH. Сер. xим. 2010. № 7. С. 1277
- Zhilenko M.P., Lupandina K.V., Ehrlich H.V., Lisichkin G.V. // Russ. Chem. Bull. 2010. Vol. 59. N 7. P. 1307. doi: 10.1007/s11172-010-0239-4
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					