Structure and stability of group 13/15 hydrides stabilized by Lewis acids and Lewis bases
- Authors: Pomogaeva A.V1, Lisovenko A.S1, Timoshkin A.Y1
- 
							Affiliations: 
							- St. Petersburg State University
 
- Issue: Vol 93, No 4 (2023)
- Pages: 644-653
- Section: Articles
- URL: https://rjeid.com/0044-460X/article/view/667062
- DOI: https://doi.org/10.31857/S0044460X23040170
- EDN: https://elibrary.ru/AWMBFJ
- ID: 667062
Cite item
Abstract
Structural and thermodynamic characteristics of donor-acceptor complexes LA·E′H2EH2·LB(E = B, Al, Ga; E′ = P, As, Sb; LB = SMe2, NMe3);LA- Lewis acids of group 13 elements ER3 (E = B, Al, Ga; R = H, Me, F, Cl, Br, I, C6F5) and transition metal carbonyls Fe(CO)4, M(CO)5, (M = Cr, Mo, W), CpMn(CO)2 were computed by quantum chemical B3LYP-D3/def2-TZVP method. It is shown that removal of the Lewis base is less endothermic than removal of Lewis acid. Stability trends of the complexes depending on group 13/15 elements and Lewis acids were established. Tungsten pentacarbonyl has the highest stabilization effect.
			                About the authors
A. V Pomogaeva
St. Petersburg State University
A. S Lisovenko
St. Petersburg State University
A. Y Timoshkin
St. Petersburg State University
														Email: a.y.timoshkin@spbu.ru
				                					                																			                												                														
References
- Staubitz A., Robertson A.P.M., Sloan M.E., Manners I. // Chem. Rev. 2010. Vol. 110. P. 4023. doi: 10.1021/cr100105a
- Vogel U., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2001. Vol. 40. P. 4409. doi: 10.1002/1521-3773(20011203)40:23<4409::AID-ANIE4409>3.0.CO;2-F
- Schwan K.-C., Timoshkin A.Y., Zabel M., Scheer M. // Chem.-Eur. J. 2006, Vol. 12. P. 4900. doi: 10.1002/chem.200600185
- Marquardt C., Adolf A., Stauber A., Bodensteiner M., Virovets A.V., Timoshkin A.Y., Scheer M. // Chem.-Eur. J. 2013. Vol. 19. P. 11887. doi: 10.1002/chem.201302110
- Butlak A.V., Kazakov I.V., Stauber A., Hegen O., Scheer M., Pomogaeva A.V., Timoshkin A.Y. // Eur. J. Inorg. Chem. 2019. Vol. 35. P. 3885. doi: 10.1002/ejic.201900817
- Marquardt C., Hegen O., Hautmann M., Balazs G., Bodensteiner M., Virovets A.V., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2015. Vol. 54. P. 13122. doi: 10.1002/anie.201505773
- Pomogaeva A.V., Lisovenko A.S., Zavgorodnii A.S., Timoshkin A.Y. // J. Comput. Chem. 2023. Vol. 44. N 3. P. 218. doi: 10.1002/jcc.26867
- Vogel U., Hoemensch P., Schwan K.-C., Timoshkin A.Y., Scheer M. // Chem.-Eur. J. 2003. Vol. 9. P. 515. doi: 10.1002/chem.200390054
- Vogel U., Timoshkin A.Y., Schwan K.-C., Bodensteiner M., Scheer M. // J. Organomet. Chem. 2006. Vol. 691. P. 4556. doi: 10.1016/j.jorganchem.2006.04.014
- Schwan K.-C., Adolf A., Thoms C., Zabel M., Timoshkin A.Y., Scheer M. // Dalton Trans. 2008. P. 5054. doi: 10.1039/B809773A
- Marquardt C., Kahoun T., Baumann J., Timoshkin A.Y., Scheer M. // Z. anorg. allg. Chem. 2017. Vol. 643. P. 1326. doi: 10.1002/zaac.201700219
- Hegen O., Marquardt C., Timoshkin A.Y., Scheer M. // Angew. Chem. Int. Ed. 2017. Vol. 56. P. 12783. doi: 10.1002/anie.201707436
- Rowland R.S., Taylor R. // J. Phys. Chem. 1996. Vol. 100. P. 7384. doi: 10.1021/jp953141+
- Ketkov S., Rychagova E., Kather R., Beckmann J. // J. Organomet. Chem. 2021. Vol. 949. P. 121944. doi: 10.1016/j.jorganchem.2021.121944
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L.,Williams-Young D.,Ding F.,Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. // Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT. 2016.
- Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 1372. doi: 10.1063/1.464304
- Lee C., Yang W., Parr R.G. // Phys. Rev. (B). 1988. Vol. 37. P. 785. doi: 10.1103/PhysRevB.37.785
- Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. Vol. 132. P. 154104. doi: 10.1063/1.3382344
- Weigend F., Ahlrichs R. // Phys Chem. Chem. Phys. 2005. Vol. 7. P. 3297. doi: 10.1039/B508541A.
- Cramer C.J. Essentials of Computational Chemistry: Theories and Models. Chichester: John Wiley and Sons, 2004, Р. 357.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					