DOPED LITHIUM TITANATES AND THEIR COMPOSITES WITH CARBON NANOTUBES AS ANODES FOR LITHIUM-ION BATTERIES
- Autores: Stenina I.A.1, Kulova T.L.2, Yaroslavtsev А.B.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
 
- Edição: Volume 69, Nº 11 (2024)
- Páginas: 2306-2316
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjeid.com/0044-457X/article/view/676627
- DOI: https://doi.org/10.31857/S0044457X24110148
- EDN: https://elibrary.ru/JKDHAQ
- ID: 676627
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Lithium titanates Li4+xTi5–xMxO12 (M = Sc, Ga, Al, Cr; x= 0, 0.05, 0.1, 0.15) and their composites with carbon nanotubes were synthesized by the sol-gel method and characterized using X-ray diffraction, scanning electron microscopy, impedance and 7Li MAS NMR spectroscopy; their electrochemical testing was carried out. Doping with trivalent cations leads to a decrease in the mobility of lithium ions in Li4+xTi5–xMxO12, which indicates the dominance of lithium transport through vacancies in these materials. The best electrochemical characteristics are demonstrated by the Li4+xTi5–xMxO12 composites with carbon nanotubes.
			                Palavras-chave
Sobre autores
I. Stenina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: stenina@igic.ras.ru
				                					                																			                												                								Moscow, Russia						
T. Kulova
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of SciencesMoscow, Russia
А. Yaroslavtsev
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
Bibliografia
- Dunn B., Kamath H., Tarascon J.-M. // Science. 2011. V. 334. P. 928. https://doi.org/10.1126/science.1212741
- Varzi A., Thanner K., Scipioni R. et al. // J. Power Sources. 2020. V. 480. P. 228803. https://doi.org/10.1016/j.jpowsour.2020.228803
- Chen Y., Kang Y., Zhao Y. et al. // J. Energy Chem. 2021. V. 59. P. 83. doi.org/10.1016/j.jechem.2020.10.017
- Sashmitha K., Rani M.U. // Polym. Bull. 2023. V. 80. P. 89. https://doi.org/10.1007/s00289-021-04008-x
- Li Y., Li Y., Zhang L. et al. // J. Energy Chem. 2023. V. 77. P. 123. https://doi.org/10.1016/j.jechem.2022.10.026
- Hossain Md.H., Chowdhury M.A., Hossain N. et al. // Chem. Eng. J. Adv. 2023. V. 16. P. 100569. https://doi.org/10.1016/j.ceja.2023.100569
- Siller V., Gonzalez-Rosillo J.C., Nunez Eroles M. et al. // Mater. Today Energy. 2022. V. 25. P.100979. https://doi.org/10.1016/j.mtener.2022.100979
- Liu R., Ma G., Li H. // Ferroelectrics. 2021. V. 580. P. 172. https://doi.org/10.1080/00150193. 2021.1905737
- Stenina I.A., Yaroslavtsev A.B. // Pure Appl. Chem. 2017. V. 89. P. 1185. https://doi.org/10.1515/pac-2016-1204
- Yan H., Zhang D., Qilu et al. // Ceramics Int. 2021. V. 47. P. 5870. https://doi.org/10.1016/j.ceramint.2020.10.241
- Pal S., Roy S., Jalagam P. et al. // ACS Appl. Energy Mater. 2021. V. 4. P. 969. https://doi.org/10.1021/acsaem.0c02929
- Han C., He Y.-B., Liu M. et al. // J. Mater. Chem. A. 2017. V. 5. P. 6368. https://doi.org/10.1039/C7TA00303J
- Xu X., Carr C., Chen X. et al. // Adv. Energy Mater. 2021. V. 11. P. 2003309. https://doi.org/10.1002/aenm.202003309
- Zhu C., Fuchs T.,Weber S.A.L. et al. // Nat.Commun. 2023. V. 14. P. 1300. https://doi.org/10.1038/s41467-023-36792-7
- Bai X., Li T., Bai Y.-J. // Dalton Trans. 2020. V. 49. P. 10003. https://doi.org/10.1039/D0DT01719A
- Stenina I.A., Kulova T.L., Skundin A.M. et al. // Mater. Res. Bull. 2016. V. 75. P. 178. https://doi.org/10.1016/j.materresbull.2015.11.050
- Yi T.-F., Wei T.-T., Li Y. et al. // Energy Storage Mater. 2020. V. 26 P. 165. https://doi.org/10.1016/j.ensm.2019.12.042
- Zhang E., Zhang H. // Ceram. Int. 2019. V. 45. P. 7419. https://doi.org/10.1016/j.ceramint.2019.01.030
- Stenina I.A., Shaydullin R.R., Desyatov A.V. et al. // Electrochim. Acta. 2020. V. 364. P. 137330. https://doi.org/10.1016/j.electacta.2020.137330
- Li J., Zhang T., Han C. et al. // J. Mater. Chem. A. 2019. V. 7. P. 455. https://doi.org/10.1039/C8TA10680K
- Meng Q., Hao Q., Chen F. et al. // Mater. Charact. 2023. V. 203. P. 113089. https://doi.org/10.1016/j.matchar.2023.113089
- Deng X., Li W., Zhu M. et al. // Solid State Ionics. 2021. V. 364. P. 115614. https://doi.org/10.1016/j.ssi.2021.115614
- Hu Y.,Wang L., Zhu C. et al. // Appl. Surf. Sci. 2024. V. 656. P. 159619. https://doi.org/10.1016/j.apsusc.2024.159619
- Yin Y., Luo X., Xu B. // J. Alloys Compd. 2022. V. 904. P. 164026. https://doi.org/10.1016/j.jallcom.2022.164026
- Wang H., Wang L., Lin J. et al. // Electrochim. Acta. 2021. V. 368. P. 137470. https://doi.org/10.1016/j.electacta.2020.137470
- Yaroslavtsev A.B., Stenina I.A. // Surf. Innov. 2021. V. 9. P. 92. https://doi.org/10.1680/jsuin.20.00044
- Ding S., Jiang Z., Gu J. et al. // Front. Chem. Sci. Eng. 2021. V. 15. P. 148. https://doi.org/10.1007/s11705-020-2022-x
- Li X., Huang X., Chen Y. et al. // Electrochim. Acta. 2021. V. 390. P. 138874. https://doi.org/10.1016/j.electacta.2021.138874
- Ma G., Deng L., Liu R. et al. // J. Solid State Electrochem. 2022. V. 26. P. 2893. https://doi.org/10.1007/s10008-022-05296-7
- Ke J., Zhang Y., Wen Z. et al. // J. Mater. Chem. A. 2023. V. 11. P. 4428. https://doi.org/10.1039/D2TA09502E
- Jang I.-S., Kang S.H., Kang Y.C. et al. // Appl. Surf. Sci. 2022. V. 605. P. 154710. https://doi.org/10.1016/j.apsusc.2022.154710
- Stenina I., Shaydullin R., Kulova T. et al. // Energies. 2020. V. 13. P. 3941. https://doi.org/10.3390/en13153941
- Iniguez F.B., Jeong H., Mohamed A.Y. et al. // J. Ind. Eng. Chem. 2022. V. 112. P. 125. https://doi.org/10.1016/j.jiec.2022.05.005
- Liu K., Wang J., Man J. et al. // Int. J. Energy Res. 2021. V. 45. P. 4345. https://doi.org/10.1002/er.6100
- Nezamzadeh Ezhyeh Z., Khodaei M., Torabi F. // Ceram. Int. 2023. V. 49. P. 7105. https://doi.org/10.1016/j.ceramint.2022.04.340
- Hou L., Qin X., Gao X. et al. // J. Alloys Compd. 2019. V. 774. P. 38. https://doi.org/10.1016/j.jallcom.2018.09.364
- Ncube N.M., Mhlongo W.T., McCrindle R.I. et al. // Mater. Today: Proceed. 2018. V. 5. P. 10592. https://doi.org/10.1016/j.matpr.2017.12.392
- Meng Q., Chen F., Hao Q. et al. // J. Alloys Compd. 2021. V. 885. P. 160842. https://doi.org/10.1016/j.jallcom.2021.160842
- Kulova T.L., Kreshchenova Y.M., Kuz’mina A.A. et al. // Mendeleev Commun. 2016. V. 26. P. 238. https://doi.org/10.1016/j.mencom.2016.05.005
- Zou S., Wang G., Zhang Y. et al. // J. Alloys Compd. 2020. V. 816. P. 152609. https://doi.org/10.1016/j.jallcom.2019.152609
- Stenina I.A., Sobolev A.N., Yaroslavtsev S.A. et al. // Electrochim. Acta. 2016. V. 219. P. 524. https://doi.org/10.1016/j.electacta.2016.10.034
- Стенина И.А., Соболев А. Н., Кулова Т. Л. и др. // Журн. неорган. химии. 2022. Т. 67.№6. С. 829.
- Shannon R.D., Prewitt C.T. // Acta Crystallogr., Sect. B. 1969. V. 25. P. 925. https://doi.org/10.1107/S0567740869003220
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
