Получение и восстановление композита на основе оксида графена и бората цинка как перспективного материала с антипиреновыми свойствами
- Авторы: Иванникова А.С.1,2, Иони Ю.В.1, Сапков И.В.1,3, Козлова Л.О.1, Козерожец И.В.1
- 
							Учреждения: 
							- Институт общей и неорганической химии им. Н.С. Курнакова РАН
- Московский государственный университет им. М.В. Ломоносова, Факультет наук о материалах
- Московский государственный университет им. М.В. Ломоносова, Физический факультет
 
- Выпуск: Том 68, № 6 (2023)
- Страницы: 857-864
- Раздел: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjeid.com/0044-457X/article/view/665250
- DOI: https://doi.org/10.31857/S0044457X2360007X
- EDN: https://elibrary.ru/UGEFHG
- ID: 665250
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Описан новый способ получения композита на основе оксида графена и нанопорошка бората цинка путем смешивания суспензий под действием УЗ-обработки с последующим удалением воды. Обработка в сверхкритическом изопропаноле позволяет получить композит на основе восстановленного оксида графена и нанопорошка бората цинка за счет удаления из структуры оксида графена кислородсодержащих функциональных групп, что позволяет добиться равномерного распределения частиц бората цинка на поверхности восстановленного оксида графена.
Об авторах
А. С. Иванникова
Институт общей и неорганической химии им. Н.С. Курнакова РАН; Московский государственный университет им. М.В. Ломоносова,Факультет наук о материалах
														Email: irina135714@yandex.ru
				                					                																			                												                								Россия, 119991, Москва, 
Ленинский пр-т, 31; Россия, 119991, Москва, Ленинские горы, 1						
Ю. В. Иони
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: irina135714@yandex.ru
				                					                																			                												                								Россия, 119991, Москва, 
Ленинский пр-т, 31						
И. В. Сапков
Институт общей и неорганической химии им. Н.С. Курнакова РАН; Московский государственный университет им. М.В. Ломоносова,Физический факультет
														Email: irina135714@yandex.ru
				                					                																			                												                								Россия, 119991, Москва, 
Ленинский пр-т, 31; Россия, 119991, Москва, Ленинские горы, 1						
Л. О. Козлова
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: irina135714@yandex.ru
				                					                																			                												                								Россия, 119991, Москва, 
Ленинский пр-т, 31						
И. В. Козерожец
Институт общей и неорганической химии им. Н.С. Курнакова РАН
							Автор, ответственный за переписку.
							Email: irina135714@yandex.ru
				                					                																			                												                								Россия, 119991, Москва, 
Ленинский пр-т, 31						
Список литературы
- Wang H., Yin P. // Case. Stud. Constr. Mater. 2023. V. 18. P. e01748. https://doi.org/10.1016/j.cscm.2022.e01748
- Dong J., Li G., Gao J. et al. // Sci. Total. Environ. 2022. V. 848. P. 157695. https://doi.org/10.1016/j.scitotenv.2022.157695
- Ling S., Lu C., Fu M. et al. // J. Clean. Prod. 2022. V. 373. P. 133970. https://doi.org/10.1016/j.jclepro.2022.133970
- Chai K., Xu S. // Adv. Powder. Technol. 2022. V. 33. P. 103776. https://doi.org/10.1016/j.apt.2022.103776
- Pan J., Wu M., Chu H. et al. // Macromol. Mater. Eng. 2022. V. 307. P. 2200259. https://doi.org/10.1002/mame.202200259
- Zhang C., He H., Li Q. et al. // Polym. Int. V. 71. P. 1193. https://doi.org/10.1002/pi.6399
- Miao Z., Yan D., Wang X. et al. // Chin. Chem. Lett. 2021. V. 33. P. 4026. https://doi.org/10.1016/j.cclet.2021.12.003
- Ozyhar T., Tschannen C., Thoemen H. et al. // Fire. And. Materials. 2022. V. 46. P. 595. https://doi.org/10.1002/fam.3009
- Tong C., Zhang S., Zhong T. et al. // Chem. Eng. J. 2021. V. 413. P. 129440. https://doi.org/10.1016/j.cej.2021.129440
- Yang K., Li X. // Holzforschung. 2019. V. 73. P. 599. https://doi.org/10.1515/hf-2018-0167
- M. Zia-ul-Mustafa, Faiz A., Sami U. et al. // Prog. Org. Coat. 2017. V. 102. P. 201. https://doi.org/10.1016/j.porgcoat.2016.10.014
- Guo L., Lv Z., Zhu T. et al. // Sci. Total. Environ. 2023. V. 858. P. 159746. https://doi.org/10.1016/j.scitotenv.2022.159746
- Xu Z., Zhan J., Xu Z. et al. // Molecules. 2022. V. 27. P. 8783. https://doi.org/10.3390/molecules27248783
- Liu J., Zeng L., Ai L. et al. // Vinyl. Addit. Technol. 2022. V. 28. P. 591. https://doi.org/10.1002/vnl.21909
- Xu Y., Zhou R., Mu J. et al. // Colloids. Surf. A. Physicochem. Eng. Asp. 2022. V. 640. P. 128400. https://doi.org/10.1016/j.colsurfa.2022.128400
- Atay H.Y., Celik E. // Polym. Compos. 2016. V. 24. P. 419. https://doi.org/10.1177/096739111602400605
- Li Y., Hao Z., Cao H. et al. // Opt Laser Technol. 2023. V. 160. P. 109054. https://doi.org/10.1016/j.optlastec.2022.109054
- Tu M., Jia L., Kong X. et al. // J. Colloid. Interface. Sci. 2023. V. 635. P. 105. https://doi.org/10.1016/j.jcis.2022.12.126
- Sahoo S., Bhuyan M., Sahoo D. // J. Alloys Compd. 2023. V. 935. P. 168097. https://doi.org/10.1016/j.jallcom.2022.168097
- Ma Q., Liu M., Cui F. et al. // Carbon. 2023. V. 204. P. 336. https://doi.org/10.1016/j.carbon.2022.12.066
- Li J., Wu W., Duan R. et al. // Appl. Surf. Sci. 2023. V. 611. P. 155736. https://doi.org/10.1016/j.apsusc.2022.155736
- Chen O., Liu L., Zhang A. et al. // Chem. Eng. J. 2023. V. 454. P. 140424. https://doi.org/10.1016/j.cej.2022.140424
- Zheng H., Liu H., Duan H. // Mater. Lett. 2023. V. 330. P. 133351. https://doi.org/10.1016/j.matlet.2022.133351
- Yang F., Zhao H., Wang Y. et al. // Colloids. Surf. A Physicochem. Eng. Asp. 2022. V. 648. P. 129326. https://doi.org/10.1016/j.colsurfa.2022.129326
- Chua C.K., Pumera M. // Chem. Soc. Rev. 2014. V. 43. P. 291. https://doi.org/10.1039/C3CS60303B
- Agarwal V., Per B. Zetterlund. // Chem. Eng. J. 2021. V. 405. P. 127018. https://doi.org/10.1016/j.cej.2020.127018
- Koreshkova A.N., Gupta V., Peristyy A. et al. // Talanta. 2019. V. 205. P. 120081. https://doi.org/10.1016/j.talanta.2019.06.081
- Sang B., Li Zw., Li Xh. et al. // J. Mater. Sci. 2016. V. 51. P. 8271. https://doi.org/10.1007/s10853-016-0124-0
- Qian X., Song L., Yu B. et al. // J. Mater. Chem. A. 2013. V. 1. P. 6822. https://doi.org/10.1039/C3TA10416H
- Pishch I.V., Rotman T.I., Romanenko Z.A. et al. // Glass. Ceram. 1987. V. 44. P.174. https://doi.org/10.1007/BF00701660
- Rajpoot Y., Sharma V., Basak S. et al. // J. Nat. Fibers. 2022. V. 19. P. 5663. https://doi.org/10.1080/15440478.2021.1889431
- Liu Z., Li Z., Zhao X. et al. // Polymers. 2018. V. 10. P. 625. https://doi.org/10.3390/polym10060625
- Kozerozhets I.V., Avdeeva V.V., Buzanov G.A. et al. // Inorganics. 2022. V. 10. P. 212. https://doi.org/10.3390/inorganics10110212
- Zhang Z., Wu W., Zhang M. et al. // Appl. Surf. Sci. 2017. V. 425. P. 896. https://doi.org/10.1016/j.apsusc.2017.07.101
- Zuo L., Fan W., Zhang Y. et al. // Compos. Sci. Technol. 2017. V. 139. P. 57. https://doi.org/10.1016/j.compscitech.2016.12.008
- Leng Q., Li J., Wang Y. // New J. Chem. 2020. V. 44. P. 4568. https://doi.org/10.1039/C9NJ06253J
- Ioni Y.V., Chentsov S.I., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1711. https://doi.org/10.1134/S0036023622601076
- Yu P., Wang H., Bao R. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. P. 1557. https://doi.org/10.1021/acssuschemeng.6b02254
- Eigler S., Dotzer C., Hof F. et al. // Chem. Eur. J. 2013. V. 19. P. 9490. https://doi.org/10.1002/chem.201300387
- Aliyev E., Filiz V., Khan M.M. et al. // Nanomaterials. 2019. V. 9. P. 1180. https://doi.org/10.3390/nano9081180
- Zheng Y., Qu Y., Tian Y. et al. // Colloids. Surf. A Physicochem. Eng. Asp. 2009. V. 349. P. 19. https://doi.org/10.1016/j.colsurfa.2009.07.039
- López-Díaz D., López Holgado M., García-Fierro J. et al. // J. Phys. Chem. 2017. V. 121. P. 20489. https://doi.org/10.1021/acs.jpcc.7b06236
- Perumbilavil S., Sankar P., T. Priya Rose T.P. et al. // Appl. Phys. Lett. 2015. V. 107. P. 051104. https://doi.org/10.1063/1.4928124
- Farah S., Farkas A., Madarász J. et al. // J. Therm. Anal. Calorim. 2020. V. 142. P. 331. https://doi.org/10.1007/s10973-020-09719-3
- Liu C., Wu W., Shi Y. et al. // Compos. B. Eng. 2020. V. 203. P. 108486. https://doi.org/10.1016/j.compositesb.2020.108486
- Ioni Y.V., Groshkova Y.A., Buslaeva E.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 950. https://doi.org/10.1134/S0036023621060115
- Tkachev S.V., Buslaeva E.Y., Naumkin A.V. et al. // J. Inorg. Mater. 2012. V. 48. P. 796. https://doi.org/10.1134/S0020168512080158
- Ioni Y.V., Kraevsky S.V., Groshkova Y.A. et al. // Mendeleev Commun. 2021. V. 35. P. 718. https://doi.org/10.1016/j.mencom.2021.09.042
- Ioni Y.V., Voronov V.V., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2015. V. 60. P. 709. https://doi.org/10.1134/S0036023615060066
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 






