Scandium(III) Benzoyltrifluoroacetonate: Structure and Thermal Properties
- Autores: Sartakova A.V.1,2, Makarenko A.M.1, Kurat’eva N.V.1, Pishchur D.P.1, Sysoev S.V.1, Vikulova E.S.1, Zherikova K.V.1
- 
							Afiliações: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
 
- Edição: Volume 68, Nº 9 (2023)
- Páginas: 1217-1225
- Seção: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://rjeid.com/0044-457X/article/view/666228
- DOI: https://doi.org/10.31857/S0044457X23600718
- EDN: https://elibrary.ru/YDKTCT
- ID: 666228
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Scandium(III) benzoyltrifluoroacetonate [Sc(btfac)3] was synthesized, purified, and characterized by elemental analysis and 1H NMR spectroscopy. Its structure was determined by single-crystal X-ray diffraction at 150 K. The complex has a molecular structure and is an axial isomer. All ligands in it are bidentate-cyclic coordinated; scandium is in a distorted octahedral environment, d(Sc–O) = 2.0681(2)–2.094(2) Å. There are two types of stacking interactions. The thermal properties in the condensed phase were studied by thermal analysis and differential scanning calorimetry (DSC). The temperature, enthalpy, and entropy of melting of the complex were determined as 399.1 ± 0.5 K, 
 = 36.8 ± 1.3 kJ/mol, and 
 = 92.2 ± 3.3 J/(K mol), respectively. The temperature-dependent saturated vapor pressure of [Sc(btfac)3] was determined in the temperature range 413–443 K by the flow (transpiration) method. The thermodynamic characteristics of vaporization at an average temperature were calculated: 
 = 135 ± 4 kJ/mol, and 
 = 212 ± 9 J/(K mol). The structure and thermal properties of scandium benzoyltrifluoroacetonate were compared to those of similar scandium tris-β-diketonate complexes
Sobre autores
A. Sartakova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
														Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia						
A. Makarenko
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
N. Kurat’eva
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
D. Pishchur
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
S. Sysoev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
E. Vikulova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
K. Zherikova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: ksenia@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
Bibliografia
- Song X., Chang M.H., Pecht M. // JOM. 2013. V. 65. P. 1276. https://doi.org/10.1007/s11837-013-0737-6
- Xu Z., Daga A., Chen H. // Appl. Phys. Lett. 2001. V. 79. P. 3782. https://doi.org/10.1063/1.1424072
- Al-Kuhaili M.F. // Thin Solid Films. 2003. V. 426. № 1–2. P. 178. https://doi.org/10.1016/S0040-6090(03)00015-4
- Takaichi K., Yagi H., Becker P. et al. // Laser Phys. Lett. 2007. V. 4. P. 507. https://doi.org/10.1002/lapl.200710020
- Lupei V., Pavel N., Lupei A. // Laser Phys. 2014. V. 24. № 4. P. 045801. https://doi.org/10.1088/1054-660X/24/4/045801
- Selvakumar J., Raghunathan V.S., Nagaraja K.S. // Chem. Vap. Depos. 2009. V. 15. № 10–12. P. 262. https://doi.org/10.1002/cvde.200906792
- Zherikova K.V., Zelenina L.N., Chusova T.P. et al. // Phys. Procedia. 2013. V. 46. P. 200. https://doi.org/10.1016/j.phpro.2013.07.068
- Kong P., Pu Y., Ma P. et al. // Thin Solid Films. 2020. V. 714. P. 138357. https://doi.org/10.1016/j.tsf.2020.138357
- Karavaev I.A., Savinkina E.V., Grigor’ev M.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1178. https://doi.org/10.1134/S0036023622080186
- De Rouffignac P., Yousef A.P., Kim K.H. et al. // Electrochem. Solid State Lett. 2006. V. 9. № 6. P. F45. https://doi.org/10.1149/1.2191131
- Smirnova T.P., Yakovkina L.V., Borisov V.O. et al. // J. Struct. Chem. 2017. V. 58. P. 1573. https://doi.org/10.1134/S0022476617080145
- Jeong D., Kim J., Kwon O. et al. // Appl. Sci. 2018. V. 8. № 11. P. 2217. https://doi.org/10.3390/app8112217
- Jung E.Y., Park C.S., Hong T.E. et al. // Jap. J. Appl. Phys. 2014. V. 53. № 3. P. 036002. https://doi.org/10.7567/JJAP.53.036002
- Anderson T.J., Neuman M.A., Melson G.A. // Inorg. Chem. 1973. V. 12. № 4. P. 927. https://doi.org/10.1021/ic50122a046
- Bennett D.W., Siddiquee T.A., Haworth D.T. et al. // J. Chem. Crystallogr. 2007. V. 37. P. 207. https://doi.org/10.1007/s10870-006-9171-8
- Zherikova K.V., Kuratieva N.V. // J. Struct. Chem. 2019. V. 60. P. 1622. https://doi.org/10.1134/S002247661910007X
- Smolentsev A.I., Zherikova K.V., Trusov M.S. et al. // J. Struct. Chem. 2011. V. 52. P. 1070. https://doi.org/10.1134/S0022476611060059
- Makarenko A.M., Kuratieva N.V., Pischur D.P. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 2. P. 183. https://doi.org/10.1134/S0036023622602215
- Rossini A.J., Schurko R.W. // J. Am. Chem. Soc. 2006. V. 128. № 32. P. 10391. https://doi.org/10.1021/ja060477w
- Makarenko A.M., Zaitsau D.H., Zherikova K.V. // Coatings. 2023. V. 13. P. 535. https://doi.org/10.3390/coatings13030535
- Fadeeva V.P., Tikhova V.D., Nikulicheva O.N. // J. Anal. Chem. 2008. V. 63. P. 1094. https://doi.org/10.1134/S1061934808110142
- Sheldrick G.M. // Acta Crystallogr. 2015. V. C71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Vikulova E.S., Cherkasov S.A., Nikolaeva N.S. et al. // J. Therm. Anal. Calorim. 2019. V. 135. P. 2573. https://doi.org/10.1007/s10973-018-7371-z
- Eisentraut K., Sievers R., Coucouvanis D. et al. // Inorganic syntheses. USA: McGraw-Hill, 1968. P. 94. https://doi.org/10.1002/9780470132425.ch17
- Zherikova K.V., Zelenina L.N., Chusova T.P. et al. // J. Chem. Thermodyn. 2016. V. 101. P. 162. https://doi.org/10.1016/j.jct.2016.05.020
- Zelenina L.N., Zherikova K.V., Chusova T.P. et al. // Thermochim. Acta. 2020. V. 689. P. 178639. https://doi.org/10.1016/j.tca.2020.178639
- Stathatos E., Lianos P., Evgeniou E. et al. // Synth. Met. 2003. V. 139. № 2. P. 433. https://doi.org/10.1016/S0379-6779(03)00204-2
- Matsubara N., Kuwamoto T. // Inorg. Chem. 1985. V. 24. № 17. P. 2697. https://doi.org/10.1021/ic00211a022
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





