Polythermal study of phase equilibria, solubility and critical phenomena in the ternary system cesium nitrate – water – polyethylene glycol-1500
- Autores: Cherkasov D.G.1, Klimova Y.S.1, Danilina V.V.1, Ilin K.K.1, Zubarev K.E.1
- 
							Afiliações: 
							- Saratov National Research State University
 
- Edição: Volume 70, Nº 4 (2025)
- Páginas: 566-574
- Seção: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://rjeid.com/0044-457X/article/view/687045
- DOI: https://doi.org/10.31857/S0044457X25040104
- EDN: https://elibrary.ru/HPHCTQ
- ID: 687045
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Phase equilibria and solubility were studied by the visual-polythermal method in mixtures of components along ten sections of the composition triangle in the range of 10–110°C in the ternary system cesium nitrate – water – polyethylene glycol-1500. Using the method of volume ratio of liquid phases, the temperature of formation of the critical node of the monotectic state (78.8°C) and the dependence of the compositions of solutions corresponding to the critical solubility points of the separation region on temperature were found. The solubility of the components was determined and isothermal phase diagrams of the studied ternary system were constructed at 10.0, 25.0, 40.0, 50.0, 78.8, 90.0, and 100.0°C. It has been established that in the range of 10.0–40.0°С on isothermal diagrams there is a triangle of the eutonic state. Above the temperature of the onset of delamination (78.8°C), a monotectic triangle with adjacent fields of saturated solutions and delamination is realized on the isotherms. The distribution coefficient of polyethylene glycol-1500 between the equilibrium liquid phases of the monotectic state in the range of 78.8–100.0°C was calculated. It has been established that cesium nitrate is effective as a salting out agent for polyethylene glycol-1500 at temperatures above 90.0°C. At all temperatures in the study interval, polyethylene glycol-1500 significantly reduces the solubility of cesium nitrate in water.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
D. Cherkasov
Saratov National Research State University
							Autor responsável pela correspondência
							Email: dgcherkasov@mail.ru
				                					                																			                												                	Rússia, 							Saratov, 410012						
Y. Klimova
Saratov National Research State University
														Email: dgcherkasov@mail.ru
				                					                																			                												                	Rússia, 							Saratov, 410012						
V. Danilina
Saratov National Research State University
														Email: dgcherkasov@mail.ru
				                					                																			                												                	Rússia, 							Saratov, 410012						
K. Ilin
Saratov National Research State University
														Email: dgcherkasov@mail.ru
				                					                																			                												                	Rússia, 							Saratov, 410012						
K. Zubarev
Saratov National Research State University
														Email: dgcherkasov@mail.ru
				                					                																			                												                	Rússia, 							Saratov, 410012						
Bibliografia
- Nemati-Kande E., Azizi Z., Mokarizadeh M. // Sci Rep. 2023. V. 13. № 1. P. 1045.https://doi.org/10.1038/s41598-023-28046-9
- Mokarizadeh M., Nemati-Kande E. // J. Chem. Eng. Data. 2022. V. 67. № 5. P. 1237.https://doi.org/10.1021/acs.jced.2c00091
- Oliveira A.C., Sosa F.H.B., Costa M.C. et al. // Fluid Phase Equilib. 2018. V. 476. P. 118.https://doi.org/10.1016/j.fluid.2018.07.035
- Milevskiy N.A., Boryagina I.V., Karpukhina E.A. et al. // J. Chem. Eng. Data. 2021. V. 66. № 2. P. 1021.https://doi.org/10.1021/acs.jced.0c00832
- Pirdashti M., Bozorgzadeh A., Ketabi M. et al. // Fluid Phase Equilib. 2019. V. 485. P. 158.https://doi.org/10.1016/j.fluid.2018.12.021
- Pirdashti M., Heidari Z., Abbasi F.N. et al. // J. Chem. Eng. Data. 2021. V. 66. № 3. P. 1425.https://doi.org/10.1021/acs.jced.0c01029
- Huang Q., Li M., Wang L. et al. // J. Chem. Thermodyn. 2020. V. 150. P. 106221.https://doi.org/10.1016/j.jct.2020.106221
- Jimenez Y.P., Galleguillos H.R., Morales J.W. et al. // J. Mol. Liq. 2019. V. 286. P. 110922.https://doi.org/10.1016/j.molliq.2019.110922
- Barani A., Pirdashti M., Heidari Z. et al. // Fluid Phase Equilib. 2018. V. 459. P. 1.https://doi.org/10.1016/j.fluid.2017.11.037
- Maolan Li, Wang L., Zheng H. et al. // Russ. J. Phys. Chem. A. 2019. V. 93. № 13. P. 2586.https://doi.org/10.1134/S0036024419130144
- Shahrokhi B., Pirdashti M., Arzideh S.M. // J. Dispersion Sci. Technol. 2022. V. 43. № 11. P. 1603.https://doi.org/10.1080/01932691.2021.1878036
- Rodrigues Barreto C.L., de Sousa Castro S., Cardozo de Souza Júnior E. et al. // J. Chem. Eng. Data. 2019. V. 64. № 2. P. 810.https://doi.org/10.1021/acs.jced.8b01113
- Sadeghi R., Jahani F. // J. Phys. Chem. B. 2012. V. 116. № 17. P. 5234.https://doi.org/10.1021/jp300665b
- Graber T.A., Taboada M.E., Asenjo J.A. et al. // J. Chem. Eng. Data. 2001. V. 46. № 3. P. 765.https://doi.org/10.1021/je000372n
- Graber T.A., Taboada M.E., Cartón A. et al. // J. Chem. Eng. Data. 2000. V. 45. № 2. P. 182.https://doi.org/10.1021/je990225t
- Jimenez Y.P., Galleguillos H.R. // J. Chem. Thermodyn. 2011. V. 43. № 11. P. 1573.https://doi.org/10.1016/j.jct.2011.05.007
- Zakhodyaeva Y.A., Rudakov D.G., Solov’ev V.O. et al. // J. Chem. Eng. Data. 2019. V. 64. № 3. P. 1250.https://doi.org/10.1021/acs.jced.8b01138
- Федорова М.И., Заходяева Ю.А., Зиновьева И.В. и др. // Изв. АН. Сер. хим. 2020. Т. 69. № 7. С. 1344.https://doi.org/10.1007/s11172-020-2908-2
- Levina A.V., Fedorov A.Ya., Fedorova M.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2022. V. 1212. P. 012023.https://doi.org/10.1088/1757-899X/1212/1/012023
- Fedorov A., Levina A.V., Fedorova M.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2022. V. 1212. P. 012012.https://doi.org/10.1088/1757-899X/1212/1/012012
- Levina A.V., Fedorova M.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2022. V. 1212. P. 012013.https://doi.org/10.1088/1757-899X/1212/1/012013
- Федорова М.И., Левина А.В., Заходяева Ю.А. и др. // Теор. основы хим. технологии. 2020. Т. 54. № 4. С. 475.
- Zakhodyaeva Y.A., Zinov’eva I.V., Tokar E.S. et al. // Molecules. 2019. V. 24. № 22. P. 4078.https://doi.org/10.3390/molecules24224078
- Харченко А.В., Егорова Е.М., Гаркушин И.К. // Журн. неорган. химии. 2022. Т. 67. № 2. С. 224.https://doi.org/10.31857/S0044457X22020064
- Подвальная Н.В., Захарова Г.С. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 300.https://doi.org/10.31857/S0044457X22601389
- Плющев В.Е., Степин Б.Д. Химия и технология соединений лития, рубидия и цезия. М.: Химия, 1970.
- Yu X., Lin W., Li M. et al. // J. Chem. Thermodyn. 2019. V. 135. P. 45.https://doi.org/10.1016/j.jct.2019.03.020
- Lin W., Zheng H., Shuai C. et al. // J. Solution Chem. 2020. V. 47. P. 1382.https://doi.org/10.1007/s10953-020-00985-1
- Mcgarvey P.W., Hoffmann M.M. // Tenside Surf. Det. 2018. V. 55. № 3. P. 203.https://doi.org/10.3139/113.110555
- Юхно Г.Д., Красноперова А.П. // Журн. физ. химии. 2013. Т. 87. № 12. С. 2074.https://doi.org/10.1134/s0036024413120273
- Hu M., Zhai Q., Jiang Y. et al. // J. Chem. Eng. Data. 2004. V. 49. № 5. P. 1440.https://doi.org/10.1021/je0498558
- Ma B., Hu M., Li S. et al. // J. Chem. Eng. Data. 2005. V. 50. № 3. P. 792.https://doi.org/10.1021/je049757m
- Chamberlin R.M., Abney K.D. // J. Radioanal. Nucl. Chem. 1999. V. 240. № 2. P. 547.https://doi.org/10.1007/bf02349412
- Черкасов Д.Г., Курский В.Ф., Ильин К.К. // Журн. неорган. химии. 2008. Т. 53. № 1. C. 146.
- Аносов В.Я., Озерова М.И., Фиалков Ю.Я. Основы физико-химического анализа. М.: Наука, 1976.
- Ильин К.К., Черкасов Д.Г. Топология фазовых диаграмм тройных систем соль–два растворителя с всаливанием–высаливанием. Саратов: Изд-во Сарат. ун-та, 2020.
- Трейбал Р. Жидкостная экстракция / Пер. с англ. под ред. Кагана С.З. М.: Химия, 1966.
- Зубарев К.Е., Климова Я.С., Суворова Н.И. и др. // XII Междунар. Курнаковское совещ. по физ.-хим. анализу. Сб. статей. СПб: Политех-пресс, 2022. 116 c.
- Киргинцев А.Н., Трушникова Л.Н., Лаврентьева В.Г. Растворимость неорганических веществ в воде: Справочник. Л.: Химия, 1972.
- Справочник по растворимости: Бинарные системы / Под ред. Кафарова В.В. М.; Л.: Изд-во АН СССР, 1961, 1962. Т. 1. кн. 1, 2.
- Черкасов Д.Г., Курский В.Ф., Синегубова С.И. и др. // Журн. неорган. химии. 2009. Т. 54. № 6. С. 1032.
- Смотров М.П., Черкасов Д.Г., Ильин К.К. // Журн. неорган. химии. 2017. Т. 62. № 3. С. 375.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






