Supramolecular Hybrid Complexes Based on Octahedral Molybdenum(II) Iodide Cluster and Zinc(II) Porphyrin
- Авторлар: Volostnykh M.V.1, Loboda P.A.2, Sinelshchikova A.A.1, Dorovatovskii P.V3, Kirakosyan G.A.1,4, Mikhaylov M.A.5, Sokolov M.N.5, Gorbunova Y.G.1,2,4
- 
							Мекемелер: 
							- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Department of Fundamental Physical and Chemical Engineering, Moscow State University
- National Research Centre Kurchatov Institute
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
 
- Шығарылым: Том 68, № 9 (2023)
- Беттер: 1192-1201
- Бөлім: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://rjeid.com/0044-457X/article/view/666222
- DOI: https://doi.org/10.31857/S0044457X23600743
- EDN: https://elibrary.ru/WRCTAX
- ID: 666222
Дәйексөз келтіру
Аннотация
The possibility of the formation of supramolecular hybrids based on two photosensitizers, an octahedral molybdenum(II) iodide cluster with six terminal isonicotinate ligands (Bu4N)2[{Mo6I8}(OOC–C5H4N)6] (PyMoC, C) and A4-type zinc(II) porphyrin (ZnTPP, P), has been demonstrated. Spectrophotometric and NMR titration methods have shown that the formation of CPn complexes (n = 1–6) occurs in solutions of noncoordinating chlorinated solvents due to the formation of metal–N-ligand coordination bonds between the components. The use of an octahedral cluster as a hexatopic N-ligand and the lability of the Zn···NPy bonds together lead to the formation of a series of CPn complexes (n = 1–6), which are in dynamic equilibrium in solution. Nevertheless, conditions have been selected to isolate single crystals of individual forms CP4 + 2 and CP6 + 2, and their structures have been determined by X-ray diffraction analysis. The PyMoC cluster turns out to coordinate four or six ZnTPP molecules, respectively, while both structures contain two “extramolecules” of zinc(II) porphyrin bound to the cluster via hydrogen bonds involving the oxygen atoms of the isonicotinate groups and protons of water axially coordinated to the porphyrin metal center.
Авторлар туралы
M. Volostnykh
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: marinavolostnykh@gmail.com
				                					                																			                												                								119071, Moscow, Russia						
P. Loboda
Department of Fundamental Physical and Chemical Engineering, Moscow State University
														Email: marinavolostnykh@gmail.com
				                					                																			                												                								119234, Moscow, Russia						
A. Sinelshchikova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: marinavolostnykh@gmail.com
				                					                																			                												                								119071, Moscow, Russia						
P. Dorovatovskii
National Research Centre Kurchatov Institute
														Email: marinavolostnykh@gmail.com
				                					                																			                												                								123182, Moscow, Russia						
G. Kirakosyan
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: marinavolostnykh@gmail.com
				                					                																			                												                								119071, Moscow, Russia; 119991, Moscow, Russia						
M. Mikhaylov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: marinavolostnykh@gmail.com
				                					                																			                												                								630090, Novosibirsk, Russia						
M. Sokolov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: marinavolostnykh@gmail.com
				                					                																			                												                								630090, Novosibirsk, Russia						
Yu. Gorbunova
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Department of Fundamental Physical and Chemical Engineering, Moscow State University; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Хат алмасуға жауапты Автор.
							Email: marinavolostnykh@gmail.com
				                					                																			                												                								119071, Moscow, Russia; 119234, Moscow, Russia; 119991, Moscow, Russia						
Әдебиет тізімі
- Scandola F., Chiorboli C., Prodi A. et al. // Coord. Chem. Rev. 2006. V. 250. № 11–12. P. 1471. https://doi.org/10.1016/j.ccr.2006.01.019
- La D.D., Ngo H.H., Nguyen D.D. et al. // Coord. Chem. Rev. 2022. V. 463. P. 214543. https://doi.org/10.1016/j.ccr.2022.214543
- Pöthig A., Casini A. // Theranostics. 2019. V. 9. № 11. P. 3150. https://doi.org/10.7150/thno.31828
- Baroncini M., Canton M., Casimiro L. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. № 42. P. 4589. https://doi.org/10.1002/ejic.201800923
- Antipin I.S., Alfimov M.V., Arslanov V.V. et al. // Russ. Chem. Rev. 2021. V. 90. № 8. P. 895. https://doi.org/10.1070/RCR5011
- Агафонов М.А., Александров Е.В., Артюхова Н.А. и др. // Журн. структур. химии. 2022. Т. 63. № 5. С. 535. https://doi.org/10.26902/JSC_id93211
- Drain C.M., Hupp J.T., Suslick K.S. et al. // J. Porphyr. Phthalocyanines. 2002. V. 6. № 4. P. 243. https://doi.org/10.1142/S1088424602000282
- Cook L.P., Brewer G., Wong-Ng W. // Crystals. 2017. V. 7. № 7. P. 223. https://doi.org/10.3390/cryst7070223
- Takagi S., Eguchi M., Tryk D. et al. // J. Photochem. Photobiol., C: Photochem. Rev. 2006. V. 7. № 2–3. P. 104. https://doi.org/10.1016/j.jphotochemrev.2006.04.002
- Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. // Macroheterocycles. 2020. V. 13. № 4. P. 311. https://doi.org/10.6060/mhc200814k
- Yu J., Zhu S., Pang L. et al. // J. Chromatogr. A. 2018. V. 1540. P. 1. https://doi.org/10.1016/j.chroma.2018.02.006
- Neamţu M., Nădejde C., Hodoroaba V.D. et al. // Appl. Catal., B: Environ. 2018. V. 232. № 2010. P. 553. https://doi.org/10.1016/j.apcatb.2018.03.079
- D’Souza F., Ito O. // Coord. Chem. Rev. 2005. V. 249. № 13–14. P. 1410. https://doi.org/10.1016/j.ccr.2005.01.002
- Menilli L., Monteiro A.R., Lazzarotto S. et al. // Pharmaceutics. 2021. V. 13. № 9. P. 1512. https://doi.org/10.3390/pharmaceutics13091512
- Ksenofontov A.A., Bichan N.G., Khodov I.A. et al. // J. Mol. Liq. 2018. V. 269. P. 327. https://doi.org/10.1016/j.molliq.2018.08.069
- Ksenofontov A.A., Lukanov M.M., Bichan N.G. et al. // Dye. Pigment. 2021. V. 185. № A. P. 108918. https://doi.org/10.1016/j.dyepig.2020.108918
- Hu R., Zhai X., Ding Y. et al. // Chinese Chem. Lett. 2022. V. 33. № 5. P. 2715. https://doi.org/10.1016/j.cclet.2021.08.110
- Zenkevich E., Blaudeck T., Sheinin V. et al. // J. Mol. Struct. 2021. V. 1244. P. 131239. https://doi.org/10.1016/j.molstruc.2021.131239
- Mandal H., Chakali M., Venkatesan M. et al. // J. Phys. Chem. C. 2021. V. 125. № 8. P. 4750. https://doi.org/10.1021/acs.jpcc.0c08229
- Zhou Y., Lu Q., Liu Q. et al. // Adv. Funct. Mater. 2022. V. 32. № 15. P. 2112159. https://doi.org/10.1002/adfm.202112159
- Lamare R., Ruppert R., Boudon C. et al. // Chem. A. Eur. J. 2021. V. 27. № 65. P. 16071. https://doi.org/10.1002/chem.202102277
- Yang Y., Tao F., Zhang L. et al. // Chinese Chem. Lett. 2022. V. 33. № 5. P. 2625. https://doi.org/10.1016/j.cclet.2021.09.093
- Wang C., Cai M., Liu Y. et al. // J. Colloid Interface Sci. 2022. V. 605. P. 727. https://doi.org/10.1016/j.jcis.2021.07.137
- Yao B.-J., Zhang X.-M., Li F. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 10. P. 10360. https://doi.org/10.1021/acsanm.0c02276
- Hajian R., Bahrami E. // Catal. Letters. 2022. V. 152. № 8. P. 2445. https://doi.org/10.1007/s10562-021-03827-x
- Zhu Y., Huang Y., Li Q. et al. // Inorg. Chem. 2020. V. 59. № 4. P. 2575. https://doi.org/10.1021/acs.inorgchem.9b03540
- Shehzad F.K., Zhou Y., Zhang L. et al. // J. Phys. Chem. C. 2018. V. 122. № 2. P. 1280. https://doi.org/10.1021/acs.jpcc.7b11244
- Xu J., Xue L.-J., Hou J.-L. et al. // Inorg. Chem. 2017. V. 56. № 14. P. 8036. https://doi.org/10.1021/acs.inorgchem.7b00775
- Allain C., Favette S., Chamoreau L. et al. // Eur. J. Inorg. Chem. 2008. V. 2008. № 22. P. 3433. https://doi.org/10.1002/ejic.200701331
- Chandra B.K.C., D’Souza F. // Coord. Chem. Rev. 2016. V. 322. P. 104. https://doi.org/10.1016/j.ccr.2016.05.012
- Volostnykh M.V., Mikhaylov M.A., Sinelshchikova A.A. et al. // Dalton Trans. 2019. V. 48. № 5. P. 1835. https://doi.org/10.1039/c8dt04452j
- Mikhailov M.A., Brylev K.A., Abramov P.A. et al. // Inorg. Chem. 2016. V. 55. № 17. P. 8437. https://doi.org/10.1021/acs.inorgchem.6b01042
- Fujii S., Tanioka E., Sasaki K. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 31. P. 2983. https://doi.org/10.1002/ejic.202000440
- Puche M., García-Aboal R., Mikhaylov M.A. et al. // Nanomaterials. 2020. V. 10. № 7. P. 1. https://doi.org/10.3390/nano10071259
- López-López N., Muñoz Resta I., De Llanos R. et al. // ACS Biomater. Sci. Eng. 2020. V. 6. № 12. P. 6995. https://doi.org/10.1021/acsbiomaterials.0c00992
- Mikhaylov M.A., Berezin A.S., Sukhikh T.S. et al. // J. Struct. Chem. 2022. V. 63. № 12. P. 2101. https://doi.org/10.1134/S0022476622120216
- Mikhailov M.A., Berezin A.S., Sukhikh T.S. et al. // J. Struct. Chem. 2021. V. 62. № 12. P. 1896. https://doi.org/10.1134/S002247662112009X
- Mikhailov M.A., Brylev K.A., Virovets A.V. et al. // New J. Chem. 2016. V. 40. № 2. P. 1162. https://doi.org/10.1039/C5NJ02246K
- Fabrizi de Biani F., Grigiotti E., Laschi F. et al. // Inorg. Chem. 2008. V. 47. № 12. P. 5425. https://doi.org/10.1021/ic7018428
- Satake A., Kobuke Y. // Tetrahedron. 2005. V. 61. № 1. P. 13. https://doi.org/10.1016/j.tet.2004.10.073
- Chichak K., Walsh M.C., Branda N.R. // Chem. Commun. 2000. № 10. P. 847. https://doi.org/10.1039/b001259i
- Gorbunova Y.G., Enakieva Y.Y., Sakharov S.G. et al. // J. Porphyr. Phthalocyanines. 2003. V. 7. № 12. P. 795. https://doi.org/10.1142/S1088424603000987
- Volostnykh M.V., Kirakosyan G.A., Sinelshchikova A.A. et al. // Dalton Trans. 2023. V. 52. № 16. P. 5354. https://doi.org/10.1039/D3DT00251A
- Armarego W.L.F., Chai C.L.L. // Purification of Organic Chemicals, in: Purif. Lab. Chem. Elsevier, 2009. P. 88. https://doi.org/10.1016/B978-1-85617-567-8.50012-3
- Kieboom A.P.G. // Recl. des Trav. Chim. des Pays-Bas. 2010. V. 107. № 12. P. 685. https://doi.org/10.1002/recl.19881071209
- Lindsey J.S., Schreiman I.C., Hsu H.C. et al. // J. Org. Chem. 1987. V. 52. № 5. P. 827. https://doi.org/10.1021/jo00381a022
- Renny J.S., Tomasevich L.L., Tallmadge E.H. et al. // Angew. Chem. Int. Ed. 2013. V. 52. № 46. P. 11998. https://doi.org/10.1002/anie.201304157
- Lazarenko V., Dorovatovskii P., Zubavichus Y. et al. // Crystals. 2017. V. 7. № 11. P. 325. https://doi.org/10.3390/cryst7110325
- Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1. https://doi.org/10.1002/crat.201900184
- Kabsch W. // Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
- Evans P. // Acta Crystallogr., Sect. D: Biol. Crystallogr. 2006. V. 62. № 1. P. 72. https://doi.org/10.1107/S0907444905036693
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Wang F., Xu L., Nawaz M.H. et al. // RSC Adv. 2014. V. 4. № 106. P. 61378. https://doi.org/10.1039/C4RA10087E
- Iwamoto H., Hori K., Fukazawa Y. // Tetrahedron Lett. 2005. V. 46. № 5. P. 731. https://doi.org/10.1016/j.tetlet.2004.12.028
- Harada K., Nguyen T.K.N., Grasset F. et al. // NPG Asia Mater. 2022. V. 14. № 1. P. 21. https://doi.org/10.1038/s41427-022-00366-8
- Mikhaylov M.A., Abramov P.A., Komarov V.Y. et al. // Polyhedron. 2017. V. 122. P. 241. https://doi.org/10.1016/j.poly.2016.11.011
- Vorotnikov Y.A., Efremova O.A., Novozhilov I.N. et al. // J. Mol. Struct. 2017. V. 1134. № 2017. P. 237. https://doi.org/10.1016/j.molstruc.2016.12.052
- Tat F.T., Zhou Z., MacMahon S. et al. // J. Org. Chem. 2004. V. 69. № 14. P. 4602. https://doi.org/10.1021/jo049671w
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Рұқсат ақылы немесе тек жазылушылар үшін
		                                							Рұқсат ақылы немесе тек жазылушылар үшін
		                                					





