Isomeric Molecular Forms of Pseudo-Binuclear Bismuth(III) Dithiocarbamate [Bi2{S2CN(CH2)6}6]: Preparation, Thermal Behavior, and Structural Effect of Its Solvation with DMSO, [Bi2{S2CN(CH2)6}6]⋅2(CH3)2SO
- Autores: Novikova E.V.1, Egorova I.V.2, Isakovskaya K.L.3,4, Ivanov A.V.1
- 
							Afiliações: 
							- Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences
- Blagoveshchensk State Pedagogical University
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Mendeleev University of Chemical Technology of Russia
 
- Edição: Volume 68, Nº 10 (2023)
- Páginas: 1433-1446
- Seção: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://rjeid.com/0044-457X/article/view/666186
- DOI: https://doi.org/10.31857/S0044457X23600548
- EDN: https://elibrary.ru/NLZMXC
- ID: 666186
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Bismuth(III) hexamethylenedithiocarbamate (HmDtc) [Bi2{S2CN(CH2)6}6] (I) and its solvated with dimethyl sulfoxide form [Bi2(S2CNHm)6]⋅2(CH3)2SO (II) have been obtained. The crystal structure of compound I shows an unusual alternation of two unsymmetrical isomeric pseudo-binuclear [Bi1/1B(HmDtc)3···Bi1A/1C(HmDtc)3] molecules, each of which involves two non-equivalent mononuclear moieties combined by secondary Bi···S bonds. The solvation of complex I leads to the structural unification of isomeric [Bi(HmDtc)3] molecules followed by their self-organization into centrosymmetric pseudo-dimers in the structure of compound II. All HmDtc ligands coordinate in S,S'-anisobidentate mode to form four isomeric (in I) or structurally unique [Bi(HmDtc)3] molecules (in II), whose distorted polyhedra can be approximated by pentagonal pyramid or octahedron. Solvating DMSO molecules are retained in the structure II by C–H···O hydrogen bonds. The analysis of energy dispersive X-ray spectra allowed one to identify the residual matter obtained by thermolysis of the complexes as Bi2S3 with admixture of Bi0.
Sobre autores
E. Novikova
Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences
														Email: alexander.v.ivanov@chemist.com
				                					                																			                												                								675000, Blagoveshchensk, Russia						
I. Egorova
Blagoveshchensk State Pedagogical University
														Email: alexander.v.ivanov@chemist.com
				                					                																			                												                								675000, Blagoveshchensk, Russia						
K. Isakovskaya
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia
														Email: alexander.v.ivanov@chemist.com
				                					                																			                												                								119991, Moscow, Russia; 125047, Moscow, Russia						
A. Ivanov
Institute of Geology and Nature Management, Far Eastern Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: alexander.v.ivanov@chemist.com
				                					                																			                												                								675000, Blagoveshchensk, Russia						
Bibliografia
- Sivasekar S., Ramalingam K., Rizzoli C., Alexander N. // Inorg. Chim. Acta. 2014. V. 419. P. 82. https://doi.org/10.1016/j.ica.2014.04.042
- Chauhan R., Chaturvedi J., Trivedi M. et al. // Inorg. Chim. Acta. 2015. V. 430. P. 168. https://doi.org/10.1016/j.ica.2015.03.007
- Kun W.N., Mlowe S., Nyamen L.D. et al. // Polyhedron. 2018. V. 154. P. 173. https://doi.org/10.1016/j.poly.2018.07.055
- Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 121. P. 70. https://doi.org/10.1016/j.poly.2016.09.038
- Tamilvanan S., Gurumoorthy G., Thirumaran S., Ciattini S. // Polyhedron. 2017. V. 123. P. 111. https://doi.org/10.1016/j.poly.2016.10.026
- Abdullah N.H., Zainal Z., Silong S. et al. // Thermochim. Acta. 2016. V. 632. P. 37. https://doi.org/10.1016/j.tca.2016.03.001
- Li H., Lai C.S., Wu J. et al. // J. Inorg. Biochem. 2007. V. 101. № 5. P. 809. https://doi.org/10.1016/j.jinorgbio.2007.01.010
- Ishak D.H.A., Ooi K.K., Ang K.-P. et al. // J. Inorg. Biochem. 2014. V. 130. P. 38. https://doi.org/10.1016/j.jinorgbio.2013.09.018
- Sun R.-Z., Guo Y.-C., Liu W.-M. et al. // Chin. J. Struct. Chem. 2012. V. 31. № 5. P. 655.
- Ferreira I.P., de Lima G.M., Paniago E.B. et al. // J. Coord. Chem. 2014. V. 67. № 6. P. 1097. https://doi.org/10.1080/00958972.2014.908188
- Ozturk I.I., Banti C.N., Kourkoumelis N. et al. // Polyhedron. 2014. V. 67. P. 89. https://doi.org/10.1016/j.poly.2013.08.052
- Adeyemi J.O., Onwudiwe D.C. // Molecules. 2020. V. 25. № 2. P. 305. https://doi.org/10.3390/molecules25020305
- Chan P.F., Ang K.P., Hamid R.A. // Biometals. 2021. V. 34. № 2. P. 365. https://doi.org/10.1007/s10534-021-00286-0
- Lai C.S., Tiekink E.R.T. // Z. Kristallogr. 2007. V. 222. № 10. P. 532. https://doi.org/10.1524/zkri.2007.222.10.532
- Yin H.D., Li F., Wang D. // J. Coord. Chem. 2007. V. 60. № 11. P. 1133. https://doi.org/10.1080/00958970601008846
- Baba I., Karimah K., Farina Y. et al. // Acta Crystallogr., Sect. E: Struct. 2002. V. 58. № 12. P. m756. https://doi.org/10.1107/S1600536802021256
- Battaglia L.P., Corradi A.B. // J. Chem. Soc., Dalton Trans. 1986. № 8. P. 1513. https://doi.org/10.1039/DT9860001513
- Иванов А.В., Егорова И.В., Иванов М.А. и др. // Докл. РАН. 2014. Т. 454. № 2. С. 190.
- Gowda V., Sarma B., Laitinen R.S. et al. // Polyhedron. 2017. V. 129. P. 123. https://doi.org/10.1002/slct.202001692
- Новикова Е.В., Заева А.С., Денисов Г.Л. и др. // Журн. неорган. химии. 2022. Т. 67. № 1. С. 103.
- Бырько В.М. Дитиокарбаматы. М.: Наука, 1984. 341 с.
- Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Казицына Л.A., Куплетская Н.Б. Применение УФ-, ИК-, ЯМР- и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979. 240 с.
- Корнеева Е.В., Иванов А.В., Герасименко А.В. и др. // Журн. общ. химии. 2019. Т. 89. № 8. С. 1260.
- Корнеева Е.В., Новикова Е.В., Лосева О.В. и др. // Коорд. химия. 2021. Т. 47. № 11. С. 707.
- SpectraBase Compound ID=5Zceg8XzL6u John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/compound/5Zceg8XzL6u (дата обращения 09.02.2023).
- SpectraBase Compound ID=DiJQuAXLpJE John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/compound/DiJQuAXLpJE (дата обращения 09.02.2023).
- Cotton F.A., Francis R., Horrocks W.D. // J. Phys. Chem. 1960. V. 64. № 10. P. 1534. https://doi.org/10.1021/j100839a046
- Тарасевич Б.Н. Основы ИК спектроскопии с преобразованием Фурье. Подготовка проб в ИК спектроскопии. M.: МГУ, 2012. 22 с.
- Кукушкин Ю.Н. Химия координационных соединений. М.: Высш. шк., 1985. 455 с.
- Bocian D.F., Pickett H.M., Rounds T.C., Strauss H.L. // J. Am. Chem. Soc. 1975. V. 97. № 4. P. 687. https://doi.org/10.1021/ja00837a001
- Boessenkool I.K., Boeyens J.C.A. // J. Cryst. Mol. Struct. 1980. V. 10. № 1/2. P. 11. https://doi.org/10.1007/BF01209549
- Alcock N.W. // Adv. Inorg. Chem. Radiochem. 1972. V. 15. № 1. P. 1. https://doi.org/10.1016/S0065-2792(08)60016-3
- Бацанов С.С. // Неорган. материалы. 2001. Т. 37. № 9. С. 1031. Batsanov S.S. // Inorg. Mater. 2001. V. 37. № 9. P. 871. https://doi.org/10.1023/A:1011625728803
- Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556
- Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. № 8. P. 375. https://doi.org/10.1524/zkri.2009.1158
- Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617. https://doi.org/10.1039/C3DT50599E
- Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
- Lin J.-C., Sharma R.C., Chang Y.A. // J. Phase Equilib. 1996. V. 17. № 2. P. 132. https://doi.org/10.1007/BF02665790
- Ge Z.-H., Qin P., He D. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 5. P. 4828. https://doi.org/10.1021/acsami.6b14803
- Zeynali H., Mousavi S.B., Hosseinpour-Mashkani S.M. // Mater. Lett. 2015. V. 144. P. 65. https://doi.org/10.1016/j.matlet.2015.01.023
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 









