Phase equilibria in the quasi–ternary Li2O–Mn2O3–Eu2O3 system
- Autores: Buzanov G.A.1, Nipan G.D.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry of the RAS
 
- Edição: Volume 69, Nº 1 (2024)
- Páginas: 58-66
- Seção: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://rjeid.com/0044-457X/article/view/665990
- DOI: https://doi.org/10.31857/S0044457X24010073
- EDN: https://elibrary.ru/ZZKISP
- ID: 665990
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Series of samples of quasi–ternary Li2O–Mn2O3 – Eu2O3 system, synthesized from of precursors subjected to preliminary mechanochemical activation and annealed in air at temperatures of 700–1100°C have been systematically studied by powder X–ray diffraction(pXRD) and thermal analysis (TG–DSC) methods. The possibility of substituting Mn for Eu for the LiMn2–xEuxO4 spinel phase is estimated. Within the framework of the Li–Mn–Eu concentration triangle, a subsolidus isobaric diagram and a projection of the liquidus surface of the Li–Mn–Eu–O system were constructed using models of polythermal phase diagrams of the LiEuO2–LiMnO2 and LiEuO2–LiMn2O4 sections. The temperatures of eutectic equilibria with the participation of three crystalline phases and a melt were determined.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
G. Buzanov
Kurnakov Institute of General and Inorganic Chemistry of the RAS
							Autor responsável pela correspondência
							Email: gbuzanov@yandex.ru
				                					                																			                												                	Rússia, 							Moscow, 119071						
G. Nipan
Kurnakov Institute of General and Inorganic Chemistry of the RAS
														Email: gbuzanov@yandex.ru
				                					                																			                												                	Rússia, 							Moscow, 119071						
Bibliografia
- Thackeray M.M., Amine K. // Nature Energy. 2021. V. 6. P. 933. https://doi.org/10.1038/s41560-021-00860-3
- Goodenough J.B. // Nobel Lecture. 2019. V. 8. P. 165.
- Armstrong A.R., Bruce P.G. // Nature. 1996. V. 381. № 6582. P. 499. https://doi.org 10.1038/381499a0
- Thackeray M.M., Johnson C.S., Vaughey J.T. et al. // J. Mater. Chem. 2005. V. 15. № 23. P. 2257. http://doi.org/10.1039/b417616m
- Xie Y., Xu Y., Yan L. et al. // Solid State Ionics. 2005. V. 176. № 35–36. P. 2563. https://doi.org/10.1016/j.ssi.2005.06.022
- Xie Y., Yang R., Yan L. et al. // J. Power Sources. 2007. V. 168. P. 272. https://doi.org/10.1016/j.jpowsour.2007.01.019
- Feng C., Tang H., Zhang K., Sun J. // Mater. Chem. Phys. 2003. V. 80. № 3. P. 573. https://doi.org/10.1016/S0254-0584(03)00115-9
- Elsabawy K.M., Abou-Sekkina M.M., Elmetwaly E.C. // Solid State Sci. 2011. V. 13. № 3. P. 601. https://doi.org/10.1016/j.solidstatesciences.2010.12.033
- Tian Y., Kang X., Liu L. et al. // J. Rare Earths. 2008. V. 26. № 2. P. 279. https://doi.org/10.1016/S1002-0721(08)60081-2
- Arumugam D., Paruthimal Kalaignan G., Manisankar P. // Solid State Ionics. 2008. V. 179. № 15–16. P. 580. https://doi.org/10.1016/j.ssi.2008.04.010
- Zhang H.-L., Ren R., An J. // Mater. Sci. Forum. 2011. V. 686. P. 716. https://doi.org/10.4028/www.scientific.net/MSF.686.716
- Michalska M., Ziókowska D.A., Jasiński J.B. et al. // Electrochim. Acta. 2018. V. 276. P. 37. https://doi.org/10.1016/j.electacta.2018.04.165
- Michalska M., Hamankiewicz B., Ziółkowska D. et al. // Electrochim. Acta. 2014. V. 136. P. 286. https://doi.org/10.1016/j.electacta.2014.05.108
- Ha H.-W., Yun N.J., Kim K. // Electrochim. Acta. 2007. V. 52. № 9. P. 3236. https://doi.org/10.1016/j.electacta.2006.09.066
- Sun H., Chen Y., Xu C. et al. // J. Solid State Electrochem. 2012. V. 16. № 3. P. 1247. https://doi.org/10.1007/s10008-011-1514-5
- Sighal R., Das S.R., Tomas M.S. et al. // J. Power Sources. 2007. V. 164. № 2. P. 857. https://doi.org/ 10.1016/j.jpowsour.2006.09.098
- Yang S.T., Jia J.H., Ding L., Zhang M.C. // Electrochim. Acta. 2003. V. 48. № 5. P. 569. https://doi.org/10.1016/S0013-4686(02)00726-0
- Khedr A.M., Abou-Sekkina M.M., El-Metwaly F.G. // J. Electronic. Mater. 2013. V. 42. № 6. P. 1275. https://doi.org/10.1007/s11664-013-2588-x
- Balaji S.R.K., Muharasu D., Shanmugan S. et al. // Ionics. 2010. V. 16. P. 351. https://doi.org/10.1007/s11581-009-0400-y
- Abou-Sekkina M.M., Khedr A.M., El-Metwaly F.G. // Chem. Mater. Res. 2013. V. 3. № 4. P. 15.
- Lee D.K., Han S.C., Ahn D. et al. // Appl. Mater. Interfaces. 2012. V. 4. № 12. P. 6842. https://doi.org/10.1021/am302003r
- Liu H.W., Zhang K.L. // Mater. Lett. 2004. V. 58. P. 3049. https://doi.org/10.1016/j.matlet.2004.05.040
- Liu H.W., Zhang K.L. // Inorg. Mater. 2005. V. 61. № 4. P. 646. https://doi.org/10.1007/s10789-005-0183-0
- Han S.C., Singh S.P., Hwang Y.-H., et al. // J. Electrochem. Soc. 2012. V. 159. № 11. P. A1867. https://doi.org/10.1149/2.009212jes
- Balaji S., Mani Chadran T., Muharasu D. // Ionics. 2012. V. 18. P. 549. https://doi.org/10.1007/s11581-011-0650-3
- Ram P., Gören A., Ferdov S. et al. // New J. Chem. 2016. V. 40. № 7. P. 6244. https://doi.org/10.1039/c6nj00198j
- Su Z., Xu M.-W., Ye S.-H., Wang Y.-L. // Acta Phys. Chim. Sin. 2009. V. 25. № 6. P. 1232. https://doi.org/10.3866/PKU.WHXB20090629
- Zhao G., He J., Zhang C. et al. // Rare Metal Mater. Eng. (China). 2008. V. 37. № 4. P. 709.
- Zhou Z.-H., Mei T.-Q. // Modern Chem. Ind. (China). 2009. V. 29. № 9. P. 246.
- Yuzer A., Ozkendir O.M. // J. Electronic Mater. 2016. V. 45. № 2. P. 989. https://doi.org/10.1007/s11664-015-4256-9
- Paulsen J.M., Dahn J.R. // Chem. Mater. 1999. V. 11. № 11. P. 3065. https://doi.org/10.1021/cm9900960
- Buzanov G.A., Nipan G.D., Zhizhin K.Yu., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 551. https://doi.org/10.1134/S0036023617050059
- Buzanov G.A., Nipan G.D. // Dokl. Phys. Chem. 2023. Accepted manuscript.
- Balakirev V.F., Golikov Yu.V. // Inorg. Mater. 2003. V. 39. Suppl. 1. P. S1. https://doi.org/10.1023/A:1024115817536
- Yankin A.M., Vedmid’ L.B., Fedorova O.M. // Russ. J. Phys. Chem. 2012. V. 86. P. 345. https://doi.org/10.1134/S003602441203034X
- Balakirev V.F., Vedmid’ L.B., Fedorova O.M. // Russ. J. Inorg. Chem. 2022. V. 67. P. 868. https://doi.org/10.1134/S0036023622060043
- Buzanov G.A., Nipan G.D. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1035. https://doi.org/10.1134/S0036023622070051
- Bärnighausen H. // Z. Anorg. Allg. Chem. 1970. V. 374. № 2. P. 201. https://doi.org/10.1002/zaac.19703740209
- Nyokong T., Greedan J.E. // Inorg. Chem. 1982. V. 21. № 1. P. 398. https://doi.org/10.1021/ic00131a071
- Barad C., Kimmel G., Hayun H. et al. // Materials. 2020. V. 13. № 9. Art. 2201. https://doi.org/10.3390/ma13092201
- Waintal A., Gondrand M. // Mater. Res. Bull. 1967. V. 2. № 9. P. 889. https://doi.org/10.1016/0025-5408(67) 90099-2
- Казенас Е.К., Цветков Ю.В. Испарение оксидов. М.: Наука, 1997. 543 с.
- Grundy A.N., Hallstedt B., Gauckler L.J. // J. Phase Equilib. 2003. V. 24. P. 21. https://doi.org/10.1007/s11669-003-0004-6
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







