Effect of boron oxide on the ionic conductivity of the Li1.2Al0.2Zr0.1Ti1.7 (PO4)3 ceramics with the NASICON structure
- Autores: Pyrkova A.B.1, Stenina I.A.1, Yaroslavtsev А.B.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
 
- Edição: Volume 70, Nº 2 (2025)
- Páginas: 274-283
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjeid.com/0044-457X/article/view/683204
- DOI: https://doi.org/10.31857/S0044457X25020136
- EDN: https://elibrary.ru/ICCHVX
- ID: 683204
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Boron oxide is considered as a good dopant for improving the ionic conductivity of solid electrolytes. This effect is usually attributed to the optimization of grain boundary conductivity. In this work, the effect of addition of 1–4 wt. % boron oxide on the ionic conductivity of Li1.2Al0.2Zr0.1Ti1.7(PO4)3 with the NASICON structure was investigated. The obtained materials were characterized by XRD, SEM, Raman spectroscopy, IR spectroscopy, impedance spectroscopy and MAS 27Al, 7Li, 31P and 11B NMR. It was shown that the introduction of B2O3 at the stage of synthesis of Li1.2Al0.2Zr0.1Ti1.7(PO4)3 leads to the production of materials doped with boron ions. The highest conductivity (2.9 × 10–4 S/cm) at 25°C is characteristic of the sample with 2 wt. % boron oxide. At the same time, when B2O3 is added to the already prepared phosphate, it is predominantly localized at the interfaces, leads to the release of LiTiPO5 impurity and does not have a significant effect on the conductivity of the prepared samples.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Pyrkova
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
														Email: stenina@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
I. Stenina
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: stenina@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
А. Yaroslavtsev
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
														Email: stenina@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
Bibliografia
- Grey C.P., Hall D.S. // Nat. Commun. 2020. V. 11. P. 6279. https://doi.org/10.1038/s41467-020-19991-4
- Sang J., Tang B., Pan K. et al. // Acc. Mater. Res. 2023. V. 4. P. 472. https://doi.org/10.1021/accountsmr.2c00229
- Janek J., Zeier W.G. // Nat. Energy. 2023. V. 8. P. 230. https://doi.org/10.1038/s41560-023-01208-9
- Zheng F., Kotobuki M., Song S. et al. // J. Power Sources. 2018. V. 389. P. 198. https://doi.org/10.1016/j.jpowsour.2018.04.022
- Воропаева Д.Ю., Стенина И.А., Ярославцев А.Б. // Успехи химии. 2024. Т. 93. C. RCR5126. https://doi.org/10.59761/RCR5126
- Yu T., Yang X., Yang R. et al. // J. Alloys Compd. 2021. V. 885. P. 161013. https://doi.org/10.1016/j.jallcom.2021.161013
- Méry A., Rousselot S., Lepage D. et al. // Batteries. 2023. V. 9. P. 87. https://doi.org/10.3390/batteries9020087
- Stenina I., Novikova S., Voropaeva D., Yaroslavtsev A. // Batteries. 2023. V. 9. P. 407. https://doi.org/10.3390/batteries9080407
- Zhang Y., Zhan T., Sun Y. et al. // Chem. Sus. Chem. 2024. V. 17. P. e202301284. https://doi.org/10.1002/cssc.202301284
- Новикова С.А., Ярославцев А.Б. // Мембр. Технол. 2024. Т. 14. С. 288. https://doi.org/10.31857/S2218117224040047
- Arinicheva Y., Wolff M., Lobe S. et al. // Advanced Ceramics for Energy Conversion and Storage / Ed. Guillon O. Elsevier: Amsterdam, 2020. P. 549. http://dx.doi.org/10.1016/B978-0-08-102726-4.00010-7
- Stenina I.A., Yaroslavtsev A.B. // Pure Appl. Chem. 2017. V. 89. P. 1185. https://doi.org/10.1515/pac-2016-1204
- Kyono N., Bai F., Nemori H. et al. // Solid State Ionics. 2018. V. 324. P. 114. https://doi.org/10.1016/j.ssi.2018.06.016
- Rai K., Kundu S. // Ceram. Int. 2020. V. 46. P. 23695. https://doi.org/10.1016/j.ceramint.2020.06.143
- Saffirio S., Falco M., Appetecchi G.B. et al. // J. Eur. Ceram. Soc. 2022. V. 42. P. 1023. https://doi.org/10.1016/j.jeurceramsoc.2021.11.014
- Nuernberg R.B., Basbus J.F., Lux K.C. et al. // J. Phys. Chem. C. 2022. V. 126. P. 4584. https://doi.org/10.1021/acs.jpcc.1c09456
- Xu A., Wang R., Yao M. et al. // Nanomaterials. 2022. V. 12. P. 2082. https://doi.org/10.3390/nano12122082
- Cвитанько А.И., Новикова С.А., Стенина И.А. и др. // Неорган. материалы. 2014. Т. 50. С. 295. https://doi.org/10.7868/S0002337X14030142
- Zhang P., Matsui M., Takeda Y. et al. // Solid State Ionics. 2014. V. 263. P. 27. https://doi.org/10.1016/j.ssi.2015.01.004
- Kothari D.H., Kanchan D.K. // Ionics. 2015. V. 21. P. 1253. https://doi.org/10.1007/s11581-014-1287-9
- Kahlaoui R., Arbi K., Sobrados I. et al. // Inorg. Chem. 2017. V. 56. P. 1216. https://doi.org/10.1021/acs.inorgchem.6b02274
- Stenina I., Pyrkova A., Yaroslavtsev A. // Batteries. 2023. V. 9. P. 59. https://doi.org/10.3390/batteries9010059
- Грищенко Д.Н., Подгорбунский А.Б., Медков М.А. // Журн. неорган. химии. 2024. Т. 69. C. 155. https://doi.org/10.31857/S0044457X24020025
- Стенина И.А., Таранченко Е.О., Ильин А.Б. и др. // Журн. неорган. химии. 2023. Т. 69. C. 1683. https://doi.org/10.31857/S0044457X23601360
- Pershina S.V., Vovkotrub E.G., Antonov B.D. // Solid State Ionics. 2022. V. 383. P. 115990. https://doi.org/10.1016/j.ssi.2022.115990
- Kim Y.-C., Jung K.-N., Lee J.-W., Park M.-S. // Ceram. Int. 2020. V. 46. P. 23200. https://doi.org/10.1016/j.ceramint.2020.06.101
- Kang J., Guo X., Gu R. et al. // J. Alloys Compd. 2023. V. 941. P. 168857. https://doi.org/10.1016/j.jallcom.2023.168857
- Bai H., Hu J., Li X. et al. // Ceram. Int. 2018. V. 44. P. 6558. https://doi.org/10.1016/j.ceramint.2018.01.058
- Rumpel M., Appold L., Baber J. et al. // Mater. Adv. 2022. V. 3. P. 8157. https://doi.org/10.1039/D2MA00655C
- Zhu Y., Zhang Y., Lu L. // J. Power Sources. 2015. V. 290. P. 123. https://doi.org/10.1016/j.jpowsour.2015.04.170
- Das A., Sahu S., Mohapatra M. et al. // Mater. Today Energy. 2022. V. 29. P. 101118. https://doi.org/10.1016/j.mtener.2022.101118
- Jadhav H.S., Kalubarme R.S., Jang S.-Y. et al. // Dalton Trans. 2014. V. 43. P. 11723. https://doi.org/10.1039/C4DT01144A
- Peng H., Xie H., Goodenough J.B. // J. Power Sources. 2012. V. 197. P. 310. https://doi.org/10.1016/j.jpowsour.2011.09.046
- Ślubowska W., Kwatek K., Jastrzębski C. et al. // Solid State Ionics. 2019. V. 335. P. 129. https://doi.org/10.1016/j.ssi.2019.02.022
- Yan B., Kang L., Kotobuki M. et al. // J. Solid State Electrochem. 2021. V. 25. P. 527. https://doi.org/10.1007/s10008-020-04829-2
- Clemenceau T., Raj R. // MRS Commun. 2022. V. 12. P. 201. https://doi.org/10.1557/s43579-022-00162-z
- Minkiewicz J., Jones G.M., Ghanizadeh S. et al. // Open Ceram. 2023. V. 16. P. 100497. https://doi.org/10.1016/j.oceram.2023.100497
- Mariappan C.R., Gellert M., Yada C. et al. // Electrochem. Commun. 2012. V. 14. P. 25. https://doi.org/10.1016/j.elecom.2011.10.022
- Jonderian A., McCalla E. // Mater. Adv. 2021. V. 2. P. 2846. https://doi.org/10.1039/D1MA00082A
- Kobayashi R., Nakano K., Nakayama M. // Acta Mater. 2022. V. 226. P. 117596. https://doi.org/10.1016/j.actamat.2021.117596
- Stenina I.A., Velikodnyi Y.A., Ketsko V.A. et al. // Inorg. Mater. 2004. V. 40. P. 967. https://doi.org/10.1023/B:INMA.0000041330.84296.2e
- Francisco B.E., Stoldt C.R., M’Peko J.-C. // Chem. Mater. 2014. V. 26. P. 4741. https://doi.org/10.1021/cm5013872
- Barj M., Lucazeau G., Delmas C. // J. Solid State Chem. 1992. V. 100. P. 141. https://doi.org/10.1016/0022-4596(92)90164-q
- Arbi K., Bucheli W., Jiménez R., Sanz J. // J. Eur. Ceram. Soc. 2015. V. 35. P. 1477. https://doi.org/10.1016/j.jeurceramsoc.2014.11.023
- Kahlaoui R., Arbi K., Sobrados I. et al. // Inorg. Chem. 2024. V. 63. P. 7806. https://doi.org/10.1021/acs.inorgchem.4c00289
- Qiu D., Guerry P., Ahmed I. et al. // Mater. Chem. Phys. 2008. V. 111. P. 455. https://doi.org/10.1016/j.matchemphys.2008.04.045
- Duan J., Yu Y., Sun A. et al. // J. Power Sources. 2020. V. 449. P. 227574. https://doi.org/10.1016/j.jpowsour.2019.227574
- Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2000. V. 45. Suppl. 3. P. S249.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






