Synthesis and study thermodynamic properties of germanates CaYb2Ge4O12 and CaLu2Ge4O12 the range 320–1000 K
- Autores: Denisova L.T.1, Belokopytova D.V.1, Kargin Y.F.2, Vasil’ev G.V.1, Belousova N.V.1, Denisov V.M.1
- 
							Afiliações: 
							- Siberian Federal University
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
 
- Edição: Volume 69, Nº 9 (2024)
- Páginas: 1277-1283
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjeid.com/0044-457X/article/view/676631
- DOI: https://doi.org/10.31857/S0044457X24090079
- EDN: https://elibrary.ru/JSUGAX
- ID: 676631
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Solid-phase synthesis of CaYb2Ge4O12 and CaLu2Ge4O12 was carried out from the initial oxides of CaO, Yb2O3 (Lu2O3) and GeO2 by firing in air at temperatures of 1223–1423 K. The crystal structure of the synthesized germanates was determined by X-ray diffraction. The high-temperature heat capacity in the temperature range of 320-1050 K was measured by differential scanning calorimetry. It has been established that the obtained data on heat capacity are well described by the Mayr-Kelly equation:
Cp(CaYb2Ge4O12) = ,
Cp(CaLu2Ge4O12) = .
Based on these results, the main thermodynamic properties of oxide compounds were calculated.
Texto integral
 
												
	                        Sobre autores
L. Denisova
Siberian Federal University
							Autor responsável pela correspondência
							Email: ldenisova@sfu-kras.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk, 660041						
D. Belokopytova
Siberian Federal University
														Email: ldenisova@sfu-kras.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk, 660041						
Yu. Kargin
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
														Email: ldenisova@sfu-kras.ru
				                					                																			                												                	Rússia, 							Moscow, 119991						
G. Vasil’ev
Siberian Federal University
														Email: ldenisova@sfu-kras.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk, 660041						
N. Belousova
Siberian Federal University
														Email: ldenisova@sfu-kras.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk, 660041						
V. Denisov
Siberian Federal University
														Email: ldenisova@sfu-kras.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk, 660041						
Bibliografia
- Денисов В.М., Истомин С.А., Подкопаев О.И. и др. Германий, его соединения и сплавы. Екатеринбург: УрО РАН, 2002. 599 с.
- Piccinelli P., Lausi A., Bettinelli M. // J. Solid State Chem. 2013. V. 205. P. 190. https://doi.org/10.1016/j.jssc.2013.07.021
- Baklanova Y.V., Enyashin A.N., Maksimova L.G. et al. // Ceram. Int. 2018. V. 44. P. 6959. https://doi.org/10.1016/j.ceramint.2018.01.128
- Cui J., Li P., Cao L. et al. // J. Lumin. 2021. V. 237. P. 118170. https://doi.org/10.1016/j.jlumin.2021.11.118170
- He Y., Wei X., Wu Y. et al. // J. Solid State Chem. 2023. V. 322. P. 123980. https://doi.org/10.1016/j.jssc.2023.123980
- Зубков В.Г., Леонидов И.И., Тютюнник А.П. и др. // Физика твердого тела. 2008. Т. 50. № 9. С. 1635.
- Melkozerova M.A., Tarakina N.V., Maksimova L.G. et al. // J. Sol-Gel. Sci. Technol. 2011. V. 59. P. 338. https://doi.org/10.1007/s10971-011-2508-6
- Leonidov I.I., Petrov V.P., Chernyshev V.A. et al. // J. Phys. Chem. 2014. V. 118. P. 8090. https://doi.org/10.1021/jp410492a
- Lipina O.A., Surat L.L., Melkozerova M.A. et al. // J. Solid State Chem. 2013. V. 206. P. 117. https://doi.org/10.1016/j.jssc.2013.08.007
- Tatarina N.V., Zubkov V.G., Leonidov I.I. et al. // Z. Kristallogr. Suppl. 2009. V. 30. P. 401. https://doi.org/10.1524/zksu.2009.0059
- Денисова Л.Т., Молокеев М.С., Каргин Ю.Ф. и др. // Неорган. материалы. 2022. Т. 58. № 4. С. 432. https://doi.org/10.31857/S0002337X22040030
- Галиахметова Н.А., Денисова Л.Т., Васильев Г.В. и др. // Физика твердого тела. 2023. Т. 65. № 10. С. 1821. https://doi.org/10.21883/FTТ. 2023. 56332.102
- Васильев Г.В., Коваленко К.Р., Денисова Л.Т. // Сб. тез. докл. X Всерос. конф. Высокотемпературная химия оксидных систем и материалов. СПб.: ЛЕМА, 2023. С. 154.
- Yamana H., Tanimura R., Yamada T. et al. // J. Solid State Chem. 2006. V. 179. P. 289. https://doi.org/10.1016/j.jssc.2005.10.023
- Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. Userʼs Manual. Karlsruhe: Bruker AXS, 2008.
- Zubkov V.G., Tarakina N.V., Leonidov I.I. et al. // J. Solid State Chem. 2010. V. 183. P. 1186. https://doi.org/10.1016/j.jssc.2010.03.027
- Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751.
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71. https://doi.org/10.7868/S0002337X17010043
- Maier C.G., Kelley K.K. // J.Am. Chem. Soc. 1932. V. 54. № 8. P. 3243. https://doi.org/10.1021/ja01347a029
- Leitner J., Chuchvalec P., Sedmidubský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27.
- Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
- Успенская И.А., Иванов А.С., Константинова Н.М., Куценок И.Б. // Журн. физ. химии. 2022. Т. 96. № 9. С. 1302. https://doi.org/10.31857/S0044453722090291
- Третьяков Ю.Д. Твердофазные реакции. М.: Химия, 1978. 360 с.
- Денисова Л.Т., Каргин Ю.Ф., Белоусова Н.В. и др. // Неорган. материалы. 2019. Т. 55. № 9. С. 1007. https://doi.org/10.1134/S0002337X19090021
- Осина Е.Л. // Теплофизика высоких температур. 2017. Т. 55. № 2. С. 223. https://doi.org/10.7868/S0040364417020120
- Моисеев Г.К., Ватолин Н.А., Маршук Л.А., Ильиных Н.И. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных АСТРА. OWN). Екатеринбург: УрО РАН, 1997. 230 с.
- Морачевский А.Г., Сладков И.Б., Фирсова Е.Г. Термодинамические расчеты в химии и металлургии. СПб.: Лань, 2018. 208 с.
- Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- Mostafa A.T.M.G., Eakman J.M., Montoya M.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1996. V. 35. P. 343. https://doi.org/10.1021/ie9501485
- Leitner J., Sedmidubský D., Chuchvalec P. // Ceram. Silik. 2002. V. 46. P. 29.
- Кумок В.Н. Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
- Zinkevich M. // Prog. Mater. Sci. 2007. V. 52. P. 597. https://doi.org/10.1016/j.pmatsci.2006.09.002
- Guskov A.V., Gagarin P.G., Guskov N.V. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
- Mostafa A.T.G.M., Eakman J.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1995. V. 34. P. 4577.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



