Высокотемпературное масс-спектрометрическое изучение испарения оксикарбидной керамики на основе МАХ-фаз
- Авторы: Ворожцов В.А.1, Столярова В.Л.1,2, Лопатин С.И.1,2, Шилов А.Л.1
- 
							Учреждения: 
							- Институт химии силикатов им. И.В. Гребенщикова РАН
- Санкт-Петербургский государственный университет
 
- Выпуск: Том 69, № 3 (2024)
- Страницы: 448-462
- Раздел: ФАЗОВЫЕ РАВНОВЕСИЯ В НЕОРГАНИЧЕСКИХ СИСТЕМАХ: ТЕРМОДИНАМИКА И МОДЕЛИРОВАНИЕ
- URL: https://rjeid.com/0044-457X/article/view/666623
- DOI: https://doi.org/10.31857/S0044457X24030189
- EDN: https://elibrary.ru/YDHSSQ
- ID: 666623
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Изучены процессы испарения карбидных материалов химического состава Ti2SiC, Ti3SiC2, Ti2AlC, Ti3AlC2, Zr2AlC и Zr3AlC2, содержащих МАХ-фазы, а также оксикарбидных систем на их основе с добавлением HfO2 масс-спектрометрическим эффузионным методом Кнудсена до температуры 2200 K. Установлено, что основной молекулярной формой пара над образцами состава Ti2AlC, Ti3AlC2, Zr2AlC и Zr3AlC2 при температуре 1٥00 K является атомарный алюминий. Образцы, содержащие кремний, менее летучи, по сравнению с карбидными материалами с алюминием, и переходят в пар при температурах >1900 K с образованием газообразных Si, Si2, SiC2 и Si2C. Введение оксидa гафния в изученные карбиды приводит к появлению в паре кислородсодержащих молекулярных форм, в частности Al2O и SiO, и уменьшению общего давления пара над образующимися системами. Показано, что наиболее труднолетучими являются образцы оксикарбидной системы Ti2SiC–HfO2, а среди оксикарбидных систем, содержащих алюминий, – образцы системы Zr2AlC–HfO2 при содержании оксида гафния до 10 мол. % и системы Ti2AlC–HfO2 при большем содержании HfO2.
Полный текст
 
												
	                        Об авторах
В. А. Ворожцов
Институт химии силикатов им. И.В. Гребенщикова РАН
							Автор, ответственный за переписку.
							Email: v.vorozhcov@rambler.ru
				                					                																			                												                	Россия, 							Санкт-Петербург						
В. Л. Столярова
Институт химии силикатов им. И.В. Гребенщикова РАН; Санкт-Петербургский государственный университет
														Email: v.vorozhcov@rambler.ru
				                					                																			                												                	Россия, 							Санкт-Петербург; Санкт-Петербург						
С. И. Лопатин
Институт химии силикатов им. И.В. Гребенщикова РАН; Санкт-Петербургский государственный университет
														Email: v.vorozhcov@rambler.ru
				                					                																			                												                	Россия, 							Санкт-Петербург; Санкт-Петербург						
А. Л. Шилов
Институт химии силикатов им. И.В. Гребенщикова РАН
														Email: v.vorozhcov@rambler.ru
				                					                																			                												                	Россия, 							Санкт-Петербург						
Список литературы
- Barsoum M.W. // Prog. Solid State Chem. 2000. V. 28. № 1–4. P. 201. https://doi.org/10.1016/S0079-6786(00)00006-6
- Radovic M., Barsoum M.W. // Am. Ceram. Soc. Bull. 2013. V. 92. № 3. P. 20. https://bulletin-archive.ceramics.org/is-cacheable/1605850406926/ucujko.pdf
- Gonzalez-Julian J. // J. Am. Ceram. Soc. 2021. V. 104. № 2. P. 659. https://doi.org/10.1111/jace.17544
- Kovalev D.Y., Luginina M.A., Vadchenko S.G. // Russ. J. Inorg. Chem. 2017. V. 62. № 12. P. 1638. https://doi.org/10.1134/S0036023617120117
- Simonenko E.P., Simonenko N.P., Nagornov I.A. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1838. https://doi.org/10.1134/S0036023622601222
- Hoffman E.N., Vinson D.W., Sindelar R.L. et al. // Nucl. Eng. Des. 2012. V. 244. P. 17. https://doi.org/10.1016/j.nucengdes.2011.12.009
- Lee W.E., Giorgi E., Harrison R. et al. // Ultra-High Temp. Ceram. Mater. Extrem. Environ. Appl. Hoboken: John Wiley & Sons, Inc., 2014. P. 391. https://doi.org/10.1002/9781118700853.ch15
- Galvin T., Hyatt N.C., Rainforth W.M. et al. // Nucl. Mater. Energy. 2020. V. 22. P. 100725. https://doi.org/10.1016/j.nme.2020.100725
- Альмяшев В.И., Столярова В.Л., Крушинов Е.В. и др. // Технологии обеспечения жизненного цикла ядерных энергетических установок. 2023. Т. 31. № 1. С. 60. https://doi.org/10.52069/2414-5726_2023_1_31_60
- Wen Z., Tang Z., Meng H. et al. // Corros. Sci. 2022. V. 207. P. 110574. https://doi.org/10.1016/j.corsci.2022.110574
- Казенас Е.К., Цветков Ю.В. // Испарение карбидов. М.: Красанд, 2017. https://www.rfbr.ru/rffi/portal/books/o_2053121
- Rinehart G.H., Behrens R.G. // J. Chem. Thermodyn. 1980. V. 12. № 3. P. 205. https://doi.org/10.1016/0021-9614(80)90038-5
- Drowart J., De Maria G., Inghram M.G. // J. Chem. Phys. 1958. V. 29. № 5. P. 1015. https://doi.org/10.1063/1.1744646
- Cao Z., Xie W., Jung I.H. et al. // Metall. Mater. Trans. B: Process Metall. Mater. Process. Sci. 2015. V. 46. № 4. P. 1782. https://doi.org/10.1007/s11663-015-0344-8
- Stearns C.A., Kohl F.J. // Mass spectrometric determination of the dissociation energies of titanium dicarbide and titanium tetracarbide. NASA Technical Note D-5653. Cleveland, 1970.
- Li Y.L., Ishigaki T. // Mater. Sci. Eng. A. 2003. V. 345. № 1–2. P. 301. https://doi.org/10.1016/S0921-5093(02)00506-3
- Stearns C.A., Kohl F.J. // High-temperature mass spectrometry – Vaporization of group 4-B metal carbides. NASA Technical Note D-7613, Cleveland, 1974. https://ntrs.nasa.gov/search.jsp?R=19740012680 (accessed March 24, 2020)
- Keast V.J., Harris S., Smith D.K. // Phys. Rev. B. 2009. V. 80. № 21. P. 214113. https://doi.org/10.1103/PhysRevB.80.214113
- Sauceda D., Singh P., Falkowski A.R. et al. // npj Comput. Mater. 2021. V. 7. № 1. P. 6. https://doi.org/10.1038/s41524-020-00464-7
- Perevislov S.N., Sokolova T.V., Stolyarova V.L. // Mater. Chem. Phys. 2021. V. 267. P. 124625. https://doi.org/10.1016/j.matchemphys.2021.124625
- Perevislov S.N., Semenova V.V., Lysenkov A.S. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1100. https://doi.org/10.1134/S0036023621080210
- Perevislov S.N., Arlashkin I.E., Lysenkov A.S. // Refract. Ind. Ceram. 2022. V. 63. № 2. P. 215. https://doi.org/10.1007/S11148-022-00709-6
- Арлашкин И.Е., Перевислов С.Н. // Материаловедение. 2023. № 6. С. 16. https://doi.org/10.31044/1684-579X-2023-0-6-16-21
- Arlashkin I.E., Perevislov S.N., Stolyarova V.L. // Russ. J. Gen. Chem. 2023. V. 93. № 4. P. 881. https://doi.org/10.1134/S107036322304014X
- Perevislov S.N., Arlashkin I.E., Stolyarova V.L. // J. Am. Ceram. Soc. 2023. V. 107. P. 488. https://doi.org/10.1111/jace.19419
- Hilpert K. // Rapid Commun. Mass Spectrom. 1991. V. 5. № 4. P. 175. https://doi.org/10.1002/rcm.1290050408
- Drowart J., Chatillon C., Hastie J. et al. // Pure Appl. Chem. 2005. V. 77. № 4. P. 683. https://doi.org/10.1351/pac200577040683
- Lopatin S.I., Shugurov S.M., Tyurnina Z.G. et al. // Glass Phys. Chem. 2021. V. 47. № 1. P. 38. https://doi.org/10.1134/S1087659621010077
- Lopatin S.I. // Glass Phys. Chem. 2022. V. 48. № 2. P. 117. https://doi.org/10.1134/S1087659622020055
- Paule R.C., Mandel J. // Pure Appl. Chem. 1972. V. 31. № 3. P. 371. https://doi.org/10.1351/pac197231030371
- Mann J.B. // J. Chem. Phys. 1967. V. 46. № 5. P. 1646. https://doi.org/10.1063/1.1840917
- Meyer R.T., Lynch A.W. // High Temp. Sci. 1973. V. 5. № 3. P. 192.
- Lias S.G., Bartmess J.E., Liebman J.F. et al. // J. Phys. Chem. Ref. Data. 1988. V. 17. Suppl. 1. P. 861.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 






