2d Nanocrystals Of Zinc And Manganese(II, III) Oxides With Morphology Of Perforated Nanoflakes Obtained Using Hydrolysis Reactions Of Mn(OAc)2 AND Zn(OAc)2 By Gaseous Ammonia On The Surface Of Their Aqueous Solutions
- Authors: Tolstoy V.P.1, Gulina L.B.1, Shilovskikh E.E.1
- 
							Affiliations: 
							- Saint Petersburg State University
 
- Issue: Vol 69, No 3 (2024)
- Pages: 311-318
- Section: SOLID STATE CHEMISTRY IN MODERN MATERIALS SCIENCE
- URL: https://rjeid.com/0044-457X/article/view/666595
- DOI: https://doi.org/10.31857/S0044457X24030059
- EDN: https://elibrary.ru/YETWFI
- ID: 666595
Cite item
Abstract
The paper shows for the first time that 2D ZnO nanocrystals with the structure of wurtzite and Mn3O4 hausmanite and morphology of perforated nanoflakes can be obtained on the basis of compounds that are formed as a result of reactions occurring on the surface of aqueous solutions of acetates of the corresponding metals when it is treated in air atmosphere with gaseous NH3. Application of the marked nanocrystals on the silicon surface makes it hydrophobic in the case of ZnO and superhydrophilic in the case of Mn3O4. Using the proposed synthesis technique, sequential and multiple deposition of these compounds on the substrate surface can be performed and such “multilayers” can exhibit new properties.
Full Text
 
												
	                        About the authors
V. P. Tolstoy
Saint Petersburg State University
							Author for correspondence.
							Email: v.tolstoy@spbu.ru
				                	ORCID iD: 0000-0003-3857-7238
				                																			                												                	Russian Federation, 							Saint Petersburg						
L. B. Gulina
Saint Petersburg State University
														Email: v.tolstoy@spbu.ru
				                	ORCID iD: 0000-0002-1622-4311
				                																			                												                	Russian Federation, 							Saint Petersburg						
E. E. Shilovskikh
Saint Petersburg State University
														Email: v.tolstoy@spbu.ru
				                					                																			                												                	Russian Federation, 							Saint Petersburg						
References
- Osada M., Sasaki T. // Adv. Mater. 2012. V. 24. № 2. P. 210. https://doi.org/10.1002/adma.201103241
- Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/rcr4920
- Aslanov L.A., Dunaev S.F. // Russ. Chem. Rev. 2018. V. 87. № 9. P. https://doi.org/882. 10.1070/rcr4806
- Khan K., Tareen A.K., Aslam M. et al. // Nanoscale. 2019. V. 11. № 45. P. 21622. https://doi.org/10.1039/c9nr05919a
- Tsukanov A.A., Turk B., Vasiljeva O. et al. // Nanomaterials. 2022. V. 12. № 4. P. 650. https://doi.org/10.3390/nano12040650
- Mei L., Zhu S., Yin W. et al. // Theranostics. 2020. V. 10. № 2. P. 757. https://doi.org/10.7150/thno.39701
- Wang L., Takada K., Kajiyama A. et al. // Chem. Mater. 2003. V. 15. № 23. P. 4508. https://doi.org/10.1021/cm0217809
- Kaneva M.V., Tolstoy V.P. // Russ. J. Gen. Chem. 2022. V. 92. № 11. P. 2339. https://doi.org/10.1134/S1070363222110184
- Wu G., Wu X., Zhu X. et al. // ACS Nano. 2022. V. 16. № 7. P. 10130. https://doi.org/10.1021/acsnano.2c02841
- Zhou M., Lou X.W., Xie Y. // Nano Today. 2013. V. 8. № 6. P. 598. https://doi.org/10.1016/j.nantod.2013.12.002
- Haque F., Daeneke T., Kalantar-zadeh K. et al. // Nano-Micro Lett. 2018. V. 10. № 2. P. 23. https://doi.org/10.1007/s40820-017-0176-y
- Tolstoy V.P., Gulina L.B., Golubeva A.A. et al. // J. Solid State Electrochem. 2019. V. 23. № 2. P. 573. https://doi.org/10.1007/s10008-018-04165-6
- Korotcenkov G., Tolstoy V.P. // Nanomaterials. 2023. V. 13. № 2. P. 237. https://doi.org/10.3390/nano13020237
- Tolstoy V.P., Gulina L.B., Meleshko A.A. // Russ. Chem. Rev. 2023. V. 92. № 3. P. RCR5071. https://doi.org/10.57634/RCR5071
- Zhang Q., Chen D., Song Q. et al. // Surf. Interfaces. 2021. V. 23. P. 100979. https://doi.org/10.1016/j.surfin.2021.100979
- Peng L., Fang Z., Zhu Y. et al. // Adv. Energy Mater. 2018. V. 8. № 9. P. 1702179. https://doi.org/10.1002/aenm.201702179
- Peng L., Xiong P., Ma L. et al. // Nat. Commun. 2017. V. 8. P. 15139. https://doi.org/10.1038/ncomms15139
- Gicha B.B., Tufa L.T., Kang S. et al. // Nanomaterials. 2021. V. 11. № 6. P. 1388. https://doi.org/10.3390/nano11061388
- Nazarian-Samani M., Haghighat-Shishavan S., Nazarian-Samani M. et al. // Prog. Mater. Sci. 2021. V. 116. P. 100716. https://doi.org/10.1016/j.pmatsci.2020.100716
- Napi M.L.M., Sultan S.M., Ismail R. et al. // Materials. 2019. V. 12. № 18. P. 2985. https://doi.org/10.3390/ma12182985
- Abinaya K., Sharvanti P., Rajeswari Yogamalar N. // Nanosystems: Phys. Chem. Math. 2023. V. 14. № 4. P. 454. https://doi.org/10.17586/2220-8054-2023-14-4-454-466
- Afineevskii A.V., Prozorov D.A., Smirnov D.V. et al. // Russ. J. Gen. Chem. 2023. V. 93. № 6. P. 1560. https://doi.org/10.1134/S1070363223060282
- Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
- Julien C.M., Mauger A. // Nanomaterials. 2017. V. 7. № 11. P. 396. https://doi.org/10.3390/nano7110396
- Makvandi P., Wang C., Zare E.N. et al. // Adv. Funct. Mater. 2020. V. 30. № 22. P. 1910021. https://doi.org/10.1002/adfm.201910021
- Gulina L.B., Tolstoy V.P., Solovev A.A. et al. // Prog. Nat. Sci. 2020. V. 30. № 3. P. 279. https://doi.org/10.1016/j.pnsc.2020.05.001
- Ishioka T., Shibata Y., Takahashi M. et al. // Spectrochim. Acta, Part A. 1998. V. 54. № 12. P. 1827. https://doi.org/10.1016/S1386-1425(98)00063-8
- Dubal D.P., Dhawale D.S., Salunkhe R.R. et al. // J. Electrochem. Soc. 2010. V. 157. № 7. P. A812. https://doi.org/10.1149/1.3428675
- Poul L., Jouini N., Fiévet F. // Chem. Mater. 2000. V. 12. № 10. P. 3123. https://doi.org/10.1021/cm991179j
- Sabine T.M., Hogg S. // Acta Crystallogr., Sect. B. 1969. V. 25. № 11. P. 2254. https://doi.org/10.1107/S0567740869005528
- Aminoff G. // Z. Kristallogr. 1926. V. 64. № 63. P. 222.
- Wyckoff R.W.G. Crystal Structures. N.Y.: Interscience Publishers, 1963. 134 p.
- Strykanova V.V., Gulina L.B., Tolstoy V.P. et al. // ACS Omega. 2020. V. 5. № 25. P. 15728. https://doi.org/10.1021/acsomega.0c02258
- Su B., Li M., Shi Z. et al. // Langmuir. 2009. V. 25. № 6. P. 3640. https://doi.org/10.1021/la803948m
- Gulina L.B., Gurenko V.E., Tolstoy V.P. et al. // Langmuir. 2019. V. 35. № 47. P. 14983. https://doi.org/10.1021/acs.langmuir.9b02338
- Masuda Y., Ohji T., Kato K. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 3. P. 1666. https://doi.org/10.1021/am201811x
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted





