Polymeric iodobismuthates Cat{[BiI4]} with pyridinium-derived cations: structure and properties
- Authors: Shentseva I.A.1, Usoltsev A.U.1, Korobeynikov N.A.1,2, Korolkov I.V.1, Sokolov M.N.1, Adonin S.A.1,3
- 
							Affiliations: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Irkutsk Favorsky Institute of Chemistry SB RAS
 
- Issue: Vol 69, No 7 (2024)
- Pages: 999-1005
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://rjeid.com/0044-457X/article/view/666433
- DOI: https://doi.org/10.31857/S0044457X24070071
- EDN: https://elibrary.ru/XNZMGA
- ID: 666433
Cite item
Abstract
Two novel bismuth(III) iodide complexes – (1,3,4-MePy){[BiI4]} (1) и (3-Br-1-MePy){[BiI4]} (2)) – were synthesized by the reaction of iodides of corresponding cations with BiI3 in organic solvents. Crystal structure of the compounds was determined by X-ray diffraction; For both complexes, the thermal stability was studied, and the optical band gap values were experimentally estimated.
Keywords
Full Text
 
												
	                        About the authors
I. A. Shentseva
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: usoltsev@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk, 630090						
A. U. Usoltsev
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: usoltsev@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk, 630090						
N. A. Korobeynikov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
														Email: usoltsev@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk, 630090; Novosibirsk, 630090						
I. V. Korolkov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: usoltsev@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk, 630090						
M. N. Sokolov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: usoltsev@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk, 630090						
S. A. Adonin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Irkutsk Favorsky Institute of Chemistry SB RAS
														Email: usoltsev@niic.nsc.ru
				                					                																			                												                	Russian Federation, 							Novosibirsk, 630090; Irkutsk, 664033						
References
- Lindsjö M., Fischer A., Kloo L. // Z. Anorg. Allg. Chem. 2005. V. 631. № 8. P. 1497. https://doi.org/10.1002/zaac.200400559
- Wu L.M., Wu X.T., Chen L. // Coord. Chem. Rev. 2009. V. 253. № 23–24. P. 2787. https://doi.org/10.1016/j.ccr.2009.08.003
- Möbs J., Gerhard M., Heine J. // Dalton Trans. 2020. V. 49. № 41. P. 14397. https://doi.org/10.1039/d0dt03427d
- Heine J. // Dalton Trans. 2015. P. 10069. https://doi.org/10.1039/c5dt00813a
- Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. № 7. P. 4077. https://doi.org/10.1021/acs.inorgchem.8b00265
- Yelovik N.A., Shestimerova T.A., Bykov M.A. et al. // Russ. Chem. Bull. 2017. V. 66. № 7. P. 1196. https://doi.org/10.1007/s11172-017-1872-y
- Hrizi C., Trigui A., Abid Y. et al. // J. Solid State Chem. 2011. V. 184. № 12. P. 3336. https://doi.org/10.1016/J.JSSС. 2011.10.004
- Hrizi C., Chaari N., Abid Y. et al. // Polyhedron. 2012. V. 46. № 1. P. 41. https://doi.org/10.1016/J.POLY.2012.07.062
- Ahern J.C., Nicholas A.D., Kelly A.W. et al. // Inorg. Chim. Acta. 2018. V. 478. P. 71. https://doi.org/10.1016/J.ICA.2018.03.040
- Usol’tsev A.N., Shentseva I.A., Shayapov V.R. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1979. https://doi.org/10.1134/S0036023622601647
- Petrov A.A., Marchenko E.I., Fateev S.A. et al. // Mendeleev Commun. 2022. V. 32. № 3. P. 311. https://doi.org/10.1016/j.mencom.2022.05.006
- Grishko A.Y., Zharenova E.A., Goodilina E.A. et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 163. https://doi.org/10.1016/j.mencom.2021.03.006
- Petrov A.A., Fateev S.A., Grishko A.Y. et al. // Mendeleev Commun. 2021. V. 31. № 1. P. 14. https://doi.org/10.1016/j.mencom.2021.01.003
- Ustinova M.I., Mikheeva M.M., Shilov G.V. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 4. P. 5184. https://doi.org/10.1021/acsami.0c18061
- Frolova L.A., Gutsev L.G., Ramachandran B.R. et al. // Chem. Eng. J. 2021. V. 426. https://doi.org/10.1016/j.cej.2021.131754
- Petrov A.A., Sokolova I.P., Belich N.A. et al. // J. Phys. Chem. С. 2017. V. 121. № 38. P. 20739. https://doi.org/10.1021/acs.jpcc.7b08468
- Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997. https://doi.org/10.1134/S0036023622070087
- Green M.A., Dunlop E.D., Hohl-Ebinger J. et al. // Prog. Photovoltaics Res. Appl. 2022. V. 30. № 7. P. 687. https://doi.org/10.1002/pip.3595
- Liu H., Zhang Z., Zuo W. et al. // Adv. Energy Mater. 2023. V. 13. № 3. P. 2202209. https://doi.org/10.1002/aenm.202202209
- Mastryukov M.V., Son A.G., Tekshina E.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1652. https://doi.org/10.1134/S0036023622100540
- Novikov A.V., Usoltsev A.N., Adonin S.A. et al. // J. Mater. Chem. A. 2020. V. 8. № 42. P. 21988. https://doi.org/10.1039/D0TA06301K
- Ganose A.M., Savory C.N., Scanlon D.O. // Chem. Commun. 2017. V. 53. № 1. P. 20. https://doi.org/10.1039/c6cc06475b
- Mercier N., Louvain N., Bi W. // CrystEngComm. 2009. V. 11. № 5. P. 720. https://doi.org/10.1039/b817891g
- Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
- Bowmaker G.A., Junk P.C., Lee A.M. et al. // Aust. J. Chem. 1998. V. 51. № 4. P. 293. https://doi.org/10.1071/C97036
- Bi W., Mercier N. // Chem. Commun. 2008. № 44. P. 5743. https://doi.org/10.1039/b812588k
- Tershansy M.A., Goforth A.M., Gardinier J.R. et al. // Solid State Sci. 2007. V. 9. № 5. P. 410. https://doi.org/10.1016/j.solidstatesciences.2007.03.010
- Chernyshov I.Y., Ananyev I.V., Pidko E.A. // ChemPhysChem. 2020. V. 21. № 5. P. 370. https://doi.org/10.1002/cphc.201901083
- Desiraju G.R., Shing Ho P., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. № 8. P. 1711. https://doi.org/10.1351/PAC-REC-12-05-10
- Bhattacharyya D., Chaudhuri S., Pal A. // Vacuum. 1992. V. 43. № 4. P. 313. https://doi.org/10.1016/0042-207X(92)90163-Q
- Usoltsev A.N., Elshobaki M., Adonin S.A. et al. // J. Mater. Chem. A. 2019. V. 7. № 11. P. 5957. https://doi.org/10.1039/c8ta09204d
- Chen X., Jia M., Xu W. et al. // Adv. Opt. Mater. 2022. V. 2202153. P. 1. https://doi.org/10.1002/adom.202202153
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted





