Synthesis of Boron Nitride by Reduction of Boron Oxide with Aluminum in Nitrogen
- Authors: Tkachev D.A.1, Ziatdinov M.K.1, Zhukov I.A.1, Litvinova V.A.2, Belchikov I.A.1, Kravtsov N.G.1
- 
							Affiliations: 
							- Tomsk State University
- Tomsk State University of Architecture and Building
 
- Issue: Vol 68, No 10 (2023)
- Pages: 1405-1412
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjeid.com/0044-457X/article/view/666176
- DOI: https://doi.org/10.31857/S0044457X23600354
- EDN: https://elibrary.ru/AJOUQB
- ID: 666176
Cite item
Abstract
The paper presents the results of studies of the self-propagating high temperature synthesis (SHS) of boron nitride via chemical reduction of boron oxide with aluminum in a nitrogen medium. The phase composition of the powder reaction products depending on the nitrogen pressure during the synthesis was studied by X-ray diffraction. It was found that SHS in the B2O3–Al system gives the BN–Al2O3 powder material containing 20–28 wt % hexagonal boron nitride depending on the nitrogen pressure. Microstructure examination showed that the obtained powder materials contains separate hexagonal BN particles with <3 μm size. The differences in the density and morphology of BN and Al2O3 determine the possibility of BN isolation from the obtained powder mixture by the pneumatic powder separation methods.
About the authors
D. A. Tkachev
Tomsk State University
														Email: d.tkachev11@gmail.com
				                					                																			                												                								634050, Tomsk, Russia						
M. Kh. Ziatdinov
Tomsk State University
														Email: d.tkachev11@gmail.com
				                					                																			                												                								634050, Tomsk, Russia						
I. A. Zhukov
Tomsk State University
														Email: d.tkachev11@gmail.com
				                					                																			                												                								634050, Tomsk, Russia						
V. A. Litvinova
Tomsk State University of Architecture and Building
														Email: d.tkachev11@gmail.com
				                					                																			                												                								634003, Tomsk, Russia						
I. A. Belchikov
Tomsk State University
														Email: d.tkachev11@gmail.com
				                					                																			                												                								634050, Tomsk, Russia						
N. G. Kravtsov
Tomsk State University
							Author for correspondence.
							Email: d.tkachev11@gmail.com
				                					                																			                												                								634050, Tomsk, Russia						
References
- Перевислов C.Н. // Новые огнеупоры. 2019. № 6. P. 35. https://doi.org/10.1007/s11148-019-00355-5
- Chen B., Bi Q., Yang J. et al. // Tribol. Int. 2008. V. 41. № 12. P. 1145. https://doi.org/10.1016/j.triboint.2008.02.014
- Engler M., Lesniak C., Damasch R. et al. // Ceram. Forum Int. 2007. V. 84. № 12. P. E49.
- Eichler J., Lesniak C. // J. Eur. Ceram. Soc. 2008. V. 28. № 5. P. 1105. https://doi.org/10.1016/j.jeurceramsoc.2007.09.005
- Sigl L.S., Hunold K. // Iron Steelmaker. 1991. V. 18. № 2. P. 31.
- Rudolph S. Aluminium Cast House Technology: Seventh Australian Asian Pacific Conference. John Wiley & Sons, 2013. 163 p.
- Santosh S., Rajkumar K., Gnanavelbabu A. // Mater. Sci. Forum. Trans Tech Publications. 2015. V. 830–831. P. 87. https://doi.org/10.4028/www.scientific.net/MSF.830-831.87
- Jia D., Zhou L., Yang Z. et al. // J. Am. Ceram. Soc. 2011. V. 94. № 10. P. 3552. https://doi.org/10.1111/j.1551-2916.2011.04540.x
- Jia K., Meng X., Wang W. // Processes. 2021. V. 9. № 5. P. 871. https://doi.org/10.3390/pr9050871
- Bao J. // Electron. Mater. Lett. 2016. V. 12. P. 1. https://doi.org/10.1007/s13391-015-5308-2
- Kumar R., Sahoo. S., Joanni E. et al. // Nano Res. 2019. V. 12. № 11. P. 2655. https://doi.org/10.1007/s12274-019-2467-8
- Liu T., Li Y., He J. et al. // New J. Chem. Royal Soc. Chem. 2019. V. 43. № 8. P. 3280. https://doi.org/10.1039/C8NJ05299A
- Chao Y., Tang B., Luo J. et al. // J. Colloid Interface Sci. 2021. V. 584. P. 154. https://doi.org/10.1016/j.jcis.2020.09.075
- Zhao G., Wang A., He W. et al. // Adv. Mater. Interfaces. 2019. V. 6. № 7. P. 1900062. https://doi.org/10.1002/admi.201900062
- Yoosefian M., Etminan N., Zeraati Moghani M. et al. // Superlattices Microstruct. 2016. V. 98. P. 325. https://doi.org/10.1016/j.spmi.2016.08.049
- He Y., Li D., Gao W. et al. // Nanoscale. 2019. V. 11. № 45. P. 21909. https://doi.org/10.1039/C9NR07153A
- Chigo-Anota E., Escobedo-Morales A., Hermandez-Cocoletzi H. et al. // Physica E: Low Dimens. Syst. Nanostruct. 2015. V. 74. P. 538. https://doi.org/10.1016/j.physe.2015.08.008
- Sukhorukova I.V., Zhitnyak I.Y., Kovalskii A.M. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 31. P. 17217. https://doi.org/10.1021/acsami.5b04101
- Hu J., Yue M., Zhang P. et al. // Angew. Chem. Int. 2020. V. 59. № 17. P. 6715. https://doi.org/10.1002/anie.201914819
- Yoon S.J., Jha A. // J. Mater. Sci. 996. V. 31. № 9. P. 2265. https://doi.org/10.1007/BF00356318
- Tagawa H., Itouji O. // Bull. Chem. Soc. Jpn. 962. V. 35. № 9. P. 1536. https://doi.org/10.1246/bcsj.35.1536
- Hirano S.-I., Yogo T., Asada S. et al. // J. Am. Ceram. Soc. 1989. V. 72. № 1. P. 66. https://doi.org/10.1111/j.1151-2916.1989.tb05955.x
- Chen G.-Q., He X.-D., Han J.-C. et al. // J. Mater. Sci. Lett. 2000. V. 19. № 1. P. 81. https://doi.org/10.1023/A:1006772320587
- Haubner R., Wilhelm M., Weissengacher R. et al. Structure and Bonding. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. P. 1. https://doi.org/10.1007/3-540-45623-6_1
- Gafri O., Grill A., Itzhak D. et al. // Thin Solid Films. 1980. V. 72. № 3. P. 523. https://doi.org/10.1016/0040-6090(80)90542-8
- Evseev N.S., Matveev A.E., Nikitin P.Y. // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1319. https://doi.org/10.1134/S0036023622080095
- Bazhin P.M., Konstantinov A.S., Chizhikov A.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2040. https://doi.org/10.1134/S0036023622601696
- Сафаева Д.Р., Титова Ю.В., Майдан Д.А. // Современные материалы, техника и технологии. 2018. № 5(20). С. 70.
- Сафаева Д.Р., Титова Ю.В., Майдан Д.А. // Современные материалы, техника и технологии. 2019. № 5(26). С. 164.
- Borovinskaya I.P., Ignat′eva T.I., Vershinnikov V.I. et al. // Inorg. Mater. 2003. V. 39. P. 588. https://doi.org/10.1023/A:1024097119257
- Амосов А.П., Боровинская И.П., Мержанов А.Г. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов. М.: Машиностроение-1, 2007. 567 с.
- Мержанов А.Г., Мукасьян А.P. // Твердопламенное горение. М.: ООО “ТОРУС ПРЕСС”, 2007. 336 с.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					







