Synthesis and High-Temperature Heat Capacity of LaMgAl11O19 and SmMgAl11O19 Hexaaluminates
- Authors: Gagarin P.G.1, Guskov A.V.1, Guskov V.N.1, Khoroshilov A.V.1, Ryumin M.A.1, Gavrichev K.S.1
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- Issue: Vol 68, No 11 (2023)
- Pages: 1607-1613
- Section: ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
- URL: https://rjeid.com/0044-457X/article/view/666147
- DOI: https://doi.org/10.31857/S0044457X23601062
- EDN: https://elibrary.ru/EMEVDU
- ID: 666147
Cite item
Abstract
The processes occurring during heating of a stoichiometric mixture of lanthanum, samarium, magnesium, and aluminum hydroxides synthesized by the reverse precipitation method have been studied by DTA/TG and X-ray powder diffraction methods. The conditions for the synthesis of single-phase LaMgAl11O19 and SmMgAl11O19 samples of the magnetoplumbite structure type have been determined, and the isobaric heat capacity has been measured in the temperature range 317–1817 K, showing the absence of structural transformations in this range.
Keywords
About the authors
P. G. Gagarin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: gavrich@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
A. V. Guskov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: gavrich@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
V. N. Guskov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: gavrich@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
A. V. Khoroshilov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: gavrich@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
M. A. Ryumin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: gavrich@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
K. S. Gavrichev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Author for correspondence.
							Email: gavrich@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
References
- Bansal N.P., Zhu D. // Surf. Coat. Technol. 2008. V. 202. P. 2698.
- Gadow R., Lischka M. // Surf. Coat. Technol. 2002. V. 151–152. P. 392.
- Friedrich C., Gadow R., Schirmer T. // J. Therm. Spray Technol. 2010. V. 10. P. 592.
- Zhang Y., Wang Y., Jarligo M.O. et al. // Opt. Lasers Eng. 2008. V. 46. P. 601.
- Cao X.Q., Zhang Y.F., Zhang J.F. et al. // J. Eur. Ceram. Soc. 2008. V. 28. P. 1979.
- Iyi N., Takekawa S., Kimura S. // J. Solid State Chem. 1989. V. 83. P. 8.
- Liu Z.-G., Ouyang J.-H., Zhou Y. et al. // J. Eur. Ceram. Soc. 2009. V. 29. P. 647.
- Liu Z.-G., Ouyang J.-H., Zhou Y. et al. // J. Alloys Compd. 2009. V. 472. P. 319.
- Liu Z.-G., Ouyang J.-H., Zhou Y. et al. // Phil. Magazine. 2009. V. 89. P. 553.
- Xu Z., He L., Mu R. et al. // J. Alloys Compd. 2009. V. 473. P. 509.
- Xu Z., He L., Zhong X. et al. // J. Alloys Compd. 2009. V. 480. P. 220.
- Lu H., Wang C.-A., Zhang C. et al. // Ceram. Int. 2014. V. l40. P. 16273.
- Lu X., Yuan J., Xu M. et al. // Ceram. Int. 2021. V. 47. P. 28892.
- Wang Y.-H., Ouyang J.-H., Liu Zh.-G. // J. Alloys Compd. 2009. V. 485. P. 734
- Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822.
- Tyurin A.V., Khoroshilov A.V., Guskov V.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1599.
- Meija J., Coplen T.B., Berglund M. et al. // Pure Appl. Chem. 2016. V. 88. P. 265.
- Lefebvre D., Thery J., Vivien D. // J. Am. Ceram. Soc. 1986. V. 69. P. 289.
- Schönwelski W., Haberey F., Leckebuch R. et al. // J. Am. Ceram. Soc. 1986. V. 69. P. 7.
- Арзуманян Г.А., Багдасаров К.С., Цорикишвили Н.Г. и др. // Неорган. материалы. 1987. Т. 23. С. 1051.
- Brandt R., Muller Buschbaum H.K. // Z. Anorg. Allg. Chem. 1984. V. 510. P .163.
- Kahn A., Lejus A.M., Madsac M. et al. // J. Appl. Phys. 1981. V. 52. P. 6864.
- Doležala V., Nádhernýa L., Rubešováa K. et al. // Ceram. Int. 2019. V. 45. P. 11233.
- H. Lu K., Wang C-A., Zhang C. et al. // J. Eur. Ceram. Soc. 2015. V. 35. P. 1297.
- Ефремов В.А., Черная Н.Г., Трунов В.К., Писаренко В.Ф. // Кристаллография. 1988. Т. 33. С. 38.
- Peter E.D., Morgan F., Jamie A. // J. Am. Ceram. Soc. 1986. V. 69. P. 157.
- Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7.
- Термические константы веществ. Справ. / Под ред. Глушко В.П. М.: Изд-во АН СССР, ВИНИТИ, 1965–1982. http://www.chem.msu.ru
- Chase M.W. Jr. // J. Phys. Chem. Data. 1998. № 9. P. 1951.
- Konings R.J.M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101.
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					





