Catalytic Oxidation of CO over LaNi1/3Sb5/3O6 Synthesized by Different Methods
- Authors: Egorysheva A.V.1, Golodukhina S.V.1, Plukchi K.R.1, Liberman E.Y.2, Ellert O.G.1, Naumkin A.V.3, Chistyakov A.V.4, Kolesnik I.V.5, Arapova O.V.4
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Mendeleev University of Chemical Technology of Russia
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
- Topchiev Institute of Pertochemical Synthesis, Russian Academy of Sciences
- Faculty of Materials Science, Moscow State University
 
- Issue: Vol 68, No 12 (2023)
- Pages: 1702-1714
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjeid.com/0044-457X/article/view/666035
- DOI: https://doi.org/10.31857/S0044457X23601220
- EDN: https://elibrary.ru/USAKQQ
- ID: 666035
Cite item
Abstract
Methods for the synthesis of LaNi1/3Sb5/3O6 with a rosiaite structure have been developed using citrate method and coprecipitation followed by annealing. The influence of synthesis conditions on the morphology of the samples has been demonstrated. A comparative analysis of the catalytic properties of LaNi1/3Sb5/3O6 synthesized by various methods, in the reaction of CO oxidation has been carried out. The catalyst synthesized by the citrate method demonstrated the greatest efficiency and stability (the temperature of 90% CO conversion was T90 = 336°C). The LaNi1/3Sb5/3O6 surface was studied before and after catalysis by in situ diffuse reflectance IR spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed O2 desorption. It has been shown that the catalytic oxidation of CO on the LaNi1/3Sb5/3O6 surface proceeds according to the Mars–van Krevelen mechanism and is accompanied by redox Sb3+ ↔ Sb5+ processes. It has been established that no contamination of the sample surface occurs during the catalysis process.
About the authors
A. V. Egorysheva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: anna_egorysheva@rambler.ru
				                					                																			                												                								119991, Moscow, Russia						
S. V. Golodukhina
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: anna_egorysheva@rambler.ru
				                					                																			                												                								119991, Moscow, Russia						
K. R. Plukchi
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: anna_egorysheva@rambler.ru
				                					                																			                												                								119991, Moscow, Russia						
E. Yu. Liberman
Mendeleev University of Chemical Technology of Russia
														Email: anna_egorysheva@rambler.ru
				                					                																			                												                								125047, Moscow, Russia						
O. G. Ellert
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: anna_egorysheva@rambler.ru
				                					                																			                												                								119991, Moscow, Russia						
A. V. Naumkin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences
														Email: anna_egorysheva@rambler.ru
				                					                																			                												                								119334, Moscow, Russia						
A. V. Chistyakov
Topchiev Institute of Pertochemical Synthesis, Russian Academy of Sciences
														Email: anna_egorysheva@rambler.ru
				                					                																			                												                								119991, Moscow, Russia						
I. V. Kolesnik
Faculty of Materials Science, Moscow State University
														Email: anna_egorysheva@rambler.ru
				                					                																			                												                								119991, Moscow, Russia						
O. V. Arapova
Topchiev Institute of Pertochemical Synthesis, Russian Academy of Sciences
							Author for correspondence.
							Email: anna_egorysheva@rambler.ru
				                					                																			                												                								119991, Moscow, Russia						
References
- Seiyama T. // Catal. Rev. 1992. V. 34. P. 281. https://doi.org/10.1080/01614949208016313
- Eyssler A. Mandaliev P., Winkler A. et al. // J. Phys. Chem. C. 2010. V. 114. P. 4584. https://doi.org/10.1021/jp911052s
- Tao F.F., Shan Jj., Nguyen L. et al. // Nat. Commun. 2015. V. 6. P. 7798. https://doi.org/10.1038/ncomms8798
- Chang H., Bjørgum E., Mihai O., et al. // ACS Catal. 2020. V. 10. P. 3707. https://doi.org/10.1021/acscatal.9b05154
- Zhang X., House S.D., Tang Y. et al. // ACS Sustain. Chem. Eng. 2018. V. 6. P. 6467. https://doi.org/10.1021/acssuschemeng.8b00234
- Wang D., Xu R., Wang X., Li Y. // Nanotechnology. 2006. V. 17. P. 979. https://doi.org/10.1088/0957-4484/17/4/023
- Royer S., Duprez D. // ChemCatChem. 2011. V. 3. P. 24. https://doi.org/10.1002/cctc.201000378
- Zhu J., Gao Q. // Micropor. Mesopor. Mater. 2009. V. 124. P. 144. https://doi.org/10.1016/j.micromeso.2009.05.003
- Mahammadunnisa Sk., Manoj Kumar Reddy P., Lingaiah N., Subrahmanyam Ch. // Catal. Sci. Technol. 2013. V. 3. P. 730. https://doi.org/10.1039/C2CY20641B
- Chen J., Zou X., Rui Z., Ji H. // Energy Technol. 2020. V. 8. P. 1900641. https://doi.org/10.1002/ente.201900641
- Egorysheva A.V., Ellert O.G., Liberman E.Yu. et al. // J. Alloys Compd. 2019. V. 777. P. 655. https://doi.org/10.1016/j.jallcom.2018.11.008
- Liberman E.Yu., Ellert O.G., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 592. https://doi.org/10.1134/S0036023620040117
- Egorysheva A.V., Ellert O.G., Liberman E.Yu. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2127. https://doi.org/10.1134/S0036023622601349
- Ellert O.G., Egorysheva A.V., Golodukhina S.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 2397. https://doi.org/10.1007/s11172-021-3359-0
- Birchall T., Connor J.A., Hillier L.H. // J. Chem. Soc. Dalton Trans. 1975. V. 20. P. 2003. https://doi.org/10.1039/dt9750002003
- Carlson T.A. Auger electron spectroscopy // Photoelectron Auger Spectroscopy. Boston: Springer US, 1975. P. 279. https://doi.org/10.1007/978-1-4757-0118-0_6
- Garbassi F. // Surf. Interface Anal. 1980. V. 2. P. 165. https://doi.org/10.1002/sia.740020502
- Teterin Yu.A., Teterin A.Yu., Utkin I.O., Ryzhkov M.V. // J. Electron Spectros. Relat. Phenomena. 2004. V. 137–140. P. 601. https://doi.org/10.1016/j.elspec.2004.02.014
- Little L.H. Infrared Spectra of Adsorbed Species. London: Academic Press, 1966. 428 p.
- Yamazoe N., Fuchigami J., Kishikawa M., Seiyama T. // Surf. Sci. 1979. V. 86. P. 335. https://doi.org/10.1016/0039-6028(79)90411-4
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					










