Effect of Synthesis Conditions on the Thermoluminescence of LiMgPO4
- Authors: Gyrdasova O.I.1, Kalinkin M.O.1, Akulov D.A.1, Abashev R.M.1,2, Surdo A.I.1,2, Kellerman D.G.1
- 
							Affiliations: 
							- Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
- Ural Federal University named after the first President of Russia B.N. Yeltsin
 
- Issue: Vol 68, No 2 (2023)
- Pages: 277-282
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjeid.com/0044-457X/article/view/665314
- DOI: https://doi.org/10.31857/S0044457X22601754
- EDN: https://elibrary.ru/LRLBUO
- ID: 665314
Cite item
Abstract
Lithium magnesium phosphate LiMgPO4 is one of the most promising materials for luminescence dosimetry. In this paper, we consider methods for the synthesis or additional processing of this material, such as microwave, hydrothermal, and flux techniques, as well as melting followed by quenching, which makes it possible to enhance its thermoluminescence by increasing the crystallinity of the samples and improving grain contacts. The best properties are shown by the LiMgPO4–Na2B4O7 composite.
About the authors
O. I. Gyrdasova
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
M. O. Kalinkin
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
D. A. Akulov
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
R. M. Abashev
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia						
A. I. Surdo
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia						
D. G. Kellerman
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: kellerman@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
References
- Ivanov S.A., Stash A.I., Bush A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 588. https://doi.org/10.1134/S0036023622050096
- Sidorov A.I., Kirpichenko D.A., Yurina U.V., Podsvirov O.A. // Glass Phys. Chem. 2021. V. 47. P.118. https://doi.org/10.1134/S1087659621020140
- Abdel Rahman R.O., Hung Y.T. // Water. 2020. V. 12. P. 19. https://doi.org/10.3390/w12010019
- Pyshkina M.D., Nikitenko V.O., Zhukovsky M.V., Eki-din A.A. // AIP Conf. Proc. 2019. V. 2174. P. 020158. https://doi.org/10.1063/1.5134309
- Noor N.M., Fadzil M.S.A., Ung N. et al. // Radiat. Phys. Chem. 2016. V. 126. P. 56. https://doi.org/10.1016/j.radphyschem.2016.05.001
- Rivera T. // Appl. Radiat. Isot. 2012. V. 71. P. 30. https://doi.org/10.1016/j.radphyschem.2016.05.001
- Sears D.W., Sears H., Sehlke A., Hughes S.S. // J. Volcanol. Geotherm. Res. 2018. V. 349. P. 74. https://doi.org/10.1016/j.jvolgeores.2017.09.022
- Miyahara M.M., Sugi E., Katoh T. et al. // Radiat. Phys. Chem. 2012. V. 81. P. 705. https://doi.org/10.1016/j.jvolgeores.2017.09.022
- Yukihara E.G., McKeever S.W.S. Optically Stimulated Luminescence: Fundamentals and Applications. Wiley, 2011.
- Mckeever S.W.S. Thermoluminescence of Solids. Cambridge University Press, 1985.
- Menon S.N., Singh A.K., Kadam S. et al. // J. Food Proc. Preserv. 2019. V. 43. P. 13891. https://doi.org/10.1111/jfpp.13891
- Menon S.N., Dhabekar B.S., Kadam S., Koul D.K. // Nucl. Instrum. Methods Phys. B. 2018. V. 436. P. 45. https://doi.org/10.1016/j.nimb.2018.08.052
- Guo J., Tang Q., Zhang C. et al. // J. Rare Earths. 2017. V. 35. P. 525. https://doi.org/10.1016/S1002-0721(17)60943-8
- Gieszczyk W., Bilski P., Kłosowski M. et al. // Radiat. Measur. 2018. V. 113. P. 14. https://doi.org/10.1016/j.radmeas.2018.03.007
- Menon S.N., Dhabekar B.S., Raja A., Chougaonkar M.P. // Radiat. Measur. 2012. V. 47. P. 236. https://doi.org/10.1016/j.radmeas.2011.12.013
- Palan C.B., Bajaj N.S., Soni A., Omanwar S.K. // Bull. Mater. Sci. 2016. V. 39. P. 1157. https://doi.org/10.1007/s12034-016-1261-4
- Chougaonkar M.P., Kumar M., Bhatt B.C. // Int. J. Lum. Appl. 2012. V. 2. P. 194.
- Kulig D., Gieszczyk W., Marczewska B. et al. // Radiat. Measur. 2017. V. 106. P. 94. https://doi.org/10.1016/j.radmeas.2017.04.004
- Kalinkin M.O., Abashev R.M., Zabolotskaya E.V. et al. // Mater. Res. Express. 2019. V. 6. P. 046206. https://doi.org/10.1088/2053-1591/aafd3e
- Kellerman D.G., Medvedeva N.I., Kalinkin M.O. et al. // J. Alloys Compd. 2018. V. 766. P. 626. https://doi.org/10.1016/j.jallcom.2018.06.328
- Modak P., Modak B. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 16244. https://doi.org/10.1039/D0CP02425B
- Medvedeva N.I., Kellerman D.G., Kalinkin M.O. // Mater. Res. Express. 2019. V. 6. 106304. https://doi.org/10.1088/2053-1591/ab3882
- Wang D., Li L., Jiang J. et al. // J. Mater. Res. 2021. V. 36. P. 333. https://rdcu.be/cTWVM
- Su Y.K., Peng Y.M., Yang R.Y., Chen J.L. // Opt. Mater. 2012. V. 34. P. 1598. https://doi.org/10.1016/j.optmat.2012.03.019
- Agathopoulos S. // J. Ceram. Soc. Jpn. 2012. V. 120. P. 233. https://doi.org/10.2109/jcersj2.120.233
- Kalinkin M.O., Akulov D.A., Medvedeva N.I. et al. // Mater. Today Com. 2022. V. 31. P. 103346. https://doi.org/10.1016/j.mtcomm.2022.103346
- Mehrabi M., Zahedifar M., Hasanloo S. et al. // Radiat. Phys. Chem. 2022. V. 194. P. 110057. https://doi.org/10.1016/j.radphyschem.2022.110057
- Ozdemir A., Guckan V., Altunal V. et al. // J. Lumines. 2021. V. 230. P. 117761. https://doi.org/10.1016/j.jlumin.2020.117761
- Kutub A.A., Elmanhawaawy M.S., Babateen M.O. // Solid State Sci. Technol. 2007. V. 15. P. 191.
- Gieszczyk W., Bilski P., Mrozik A. et al. // Materials. 2020. V. 13. 2032. https://doi.org/10.3390/ma13092032
- Kellerman D.G., Kalinkin M.O., Tyutyunnik A.P. et al. // J. Alloys Compd. 2020. V. 846. 156242. https://doi.org/10.1016/j.jallcom.2020.156242
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					


