CVD Synthesis of Graphitic Carbon Nitride Films from Melamine
- Autores: Ermakova E.N.1, Maksimovskii E.A.1, Yushina I.V.1, Kosinova M.L.1
- 
							Afiliações: 
							- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
 
- Edição: Volume 68, Nº 2 (2023)
- Páginas: 256-264
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://rjeid.com/0044-457X/article/view/665311
- DOI: https://doi.org/10.31857/S0044457X22601547
- EDN: https://elibrary.ru/LPSVDH
- ID: 665311
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A CVD technique has been developed for the deposition of homogeneous graphitic carbon nitride films on silicon and quartz glass substrates using melamine as a precursor. Layer-by-layer deposition at low precursor loadings makes it possible to deposit a film up to 1.4 µm thick; however, it is possible to achieve large thicknesses by multiple repetition of the experimental cycle. The effect of synthesis parameters on the surface morphology of deposited layers has been studied by scanning electron microscopy. The chemical composition and structure of graphitic carbon nitride films are confirmed by a set of spectroscopic methods and X-ray diffraction. The optical properties have been studied using diffuse reflectance spectroscopy. Scanning electron microscopy and X-ray diffraction analysis have shown that films deposited at temperatures of 550–650°C have a layered microcrystalline structure. The bandgap of the obtained samples was 2.76–2.93 eV.
Palavras-chave
Sobre autores
E. Ermakova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ermakova@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
E. Maksimovskii
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ermakova@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
I. Yushina
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
														Email: ermakova@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
M. Kosinova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: ermakova@niic.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
Bibliografia
- Liu Y.Y., Cohen M.L. // Science. 1989. V. 245. P. 841. https://doi.org/10.1126/science.245.4920.841
- Deng X., Hattori T., Umehara N. et al. // Thin Solid Films. 2017. V. 621. P. 12. https://doi.org/10.1016/j.tsf.2016.11.025
- Contreras E., Bolívar F., Gómez M.A. // Surf. Coat. Technol. 2017. V. 332. P. 414. https://doi.org/10.1016/j.surfcoat.2017.05.095
- Liu X., Umehara N., Tokoroyama T. et al. // Tribol. Int. 2019. V. 131. P. 102. https://doi.org/10.1016/j.triboint.2018.10.022
- Li X., Xing M. // Comput. Mater. Sci. 2019. V. 158. P. 170. https://doi.org/10.1016/j.commatsci.2018.11.004
- Wu Q., Qianku Hu Q, Hou Y. et al. // J. Phys.: Condens. Matter. 2018. V. 30. P. 385402. https://doi.org/10.1088/1361-648X/aada2c
- Du J., Li X. // J. Alloys Compd. 2020. V. 815. P. 152324. https://doi.org/10.1016/j.jallcom.2019.152324
- Khanis N.H., Ritikos R., Kamal S.A.A. et al. // Materials. 2017. V. 10. P. 102. https://doi.org/10.3390/ma10020102
- Kovacevic E., Strunskus T., Santhosh N.M. et al. // Carbon. 2021. V. 184. P. 82. https://doi.org/10.1016/j.carbon.2021.08.008
- Fina F., Callear S.K., Carins G.M. et al. // Chem. Mater. 2015. V. 27. P. 2612. https://doi.org/10.1021/acs.chemmater.5b00411
- Dong G., Zhang Y., Pan Q. et al. // J. Photochem. Photobiol. C. 2014. V. 20. P. 33. https://doi.org/10.1016/j.jphotochemrev.2014.04.002
- Fu J., Yu J., Jiang C. et al. // Adv. Energy Mater. 2018. V. 8. P. 1701503. https://doi.org/10.1002/aenm.201701503
- Козлов Д.А., Артамонов К.А., Ревенко А.О. и др. // Журн. неорган. химии. 2022. Т. 67. № 5. С. 646. https://doi.org/10.31857/S0044457X22050105
- Fidan T., Torabfam M., Saleem Q. et al. // Adv. Energy Sustain. Res. 2021. V. 2. P. 3. https://doi.org/10.1002/aesr.202000073
- Peng G., Xing L., Barrio J. et al. // Angew. Chem. 2018. V. 57. P. 1186. https://doi.org/10.1002/anie.201711669
- Darkwah W.K., Ao Y. // Nanoscale Res. Lett. 2018. V. 13. P. 388. https://doi.org/10.1186/s11671-018-2702-3
- Guo W., Ming S., Chen Z. et al. // ChemElectroChem. 2018. V. 5. P. 3383. https://doi.org/10.1002/celc.201801045
- Majumder S. // Micro and Nano Technologies: Nanostructured Materials for Visible Light Photocatalysis. Amsterdam: Elsevier, 2022. P. 47. https://doi.org/10.1016/j.matlet.2014.08.078
- Wang J., Miller D.R., Gillan E.G. // Chem. Commun. 2002. P. 2258. https://doi.org/10.1039/B207041C
- Yadav R.M., Kumar R., Aliyan A. // New J. Chem. 2020. V. 44. P. 2644. https://doi.org/10.1039/C9NJ05108B
- Thomas A., Fischer A., Goettmann F. // J. Mater. Chem. 2008. V. 18. P. 4893. https://doi.org/10.1039/B800274F
- Sattler A., Pagano S., Zeuner M. // Chem. Eur. J. 2009. V. 15. P. 13161. https://doi.org/10.1002/chem.200901518
- Hong Y., Li C., Li D. et al. // Nanoscale. 2017. V. 9. P. 14 103. https://doi.org/10.1039/C7NR05155G
- Vu N.N., Nguyen C.C., Kaliaguine S. et al. // ChemSusChem. 2018. V. 12. P. 291. https://doi.org/10.1002/cssc.201802394
- Vasilchenko D., Zhurenok A., Saraev A. et al. // Chem. Eng. J. 2022. V. 445. P. 136721. https://doi.org/10.1016/j.cej.2022.136721
- Miller T.S., Belen Jorge A., Suter T.M. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. P. 15613. https://doi.org/10.1039/C7CP02711G
- Durairaj A., Sakthivel T., Ramanathan S. et al. // ACS Omega. 2019. V. 4. P. 6476. https://doi.org/10.1021/acsomega.8b03279
- Dongmei He, Du L., Wang K. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1986. https://doi.org/10.1134/S0036023621130040
- Zhang Y.M., An C.W., Zhang D.F. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 679. https://doi.org/10.1134/S0036023621050223
- Сериков Т.М., Ибраев Н.Х., Исайкина О.Я. и др. // Журн. неорган. химии. 2021. Т. 66. № 1. С. 107. https://doi.org/10.31857/S0044457X21010074
- Cesaria M., Caricato A.P., Martino M. // Appl. Phys. Lett. 2014. V. 105. P. 031105. https://doi.org/10.1063/1.4890675
- Reddy K.R., Reddy C.H.V., Nadagouda M.N. et al. // J. Environ. Manage. 2019. V. 238. P. 25. https://doi.org/10.1016/j.jenvman.2019.02.075
- Dubov O., Marcé J.G., Fortuny A. et al. // J. Mater. Sci. 2022. V. 57. P. 4970. https://doi.org/10.1007/s10853-022-06906-5
- Kang Y., Yang Y., Yin L.C. et al. // Adv. Mater. 2015. V. 27. P. 4572. https://doi.org/10.1002/adma.201501939
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



