Microwave-Assisted Hydrothermal Synthesis of Ceric-Ammonium Phosphates (NH4)2Ce(PO4)2⋅H2O and NH4Ce2(PO4)3
- Authors: Tronev I.V.1,2, Sheichenko E.D.1,2, Razvorotneva L.S.1,2, Trufanova E.A.1,2, Minakova P.V.1,2, Kozlova T.O.1, Baranchikov A.E.1, Ivanov V.K.1,2
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- National Research University Higher School of Economics
 
- Issue: Vol 68, No 3 (2023)
- Pages: 318-324
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjeid.com/0044-457X/article/view/665284
- DOI: https://doi.org/10.31857/S0044457X22601869
- EDN: https://elibrary.ru/JEWBVV
- ID: 665284
Cite item
Abstract
The possibility of preparation of crystalline double cerium(IV) phosphates (NH4)2Ce(PO4)2⋅H2O and NH4Ce2(PO4)3 under the conditions of microwave-assisted hydrothermal synthesis has been analyzed. It has been shown that these phosphates in a single-phase state can be obtained in the temperature range of 130–190°С with a synthesis duration of ≥5 min, while the phase composition of the synthesis products is determined by the molar ratio of ammonia and phosphoric acid in the reaction mixture. Short-term (5 min) low-temperature (130°С) hydrothermal synthesis under microwave heating leads to the preparation of (NH4)2Ce(PO4)2⋅H2O and NH4Ce2(PO4)3 with a particle size of ~70 and ~200 nm, respectively. At higher temperatures and treatment times (190°C and 24 h), the particle size of these phases increases to ~200 and ~500 nm, respectively. For the first time, the value of the optical band gap for (NH4)2Ce(PO4)2⋅H2O was determined to be 2.8 and 3.1 eV for indirect and direct transitions, respectively.
Keywords
About the authors
I. V. Tronev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics
														Email: van@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia; 101000, Moscow, Russia						
E. D. Sheichenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics
														Email: van@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia; 101000, Moscow, Russia						
L. S. Razvorotneva
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics
														Email: van@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia; 101000, Moscow, Russia						
E. A. Trufanova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics
														Email: van@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia; 101000, Moscow, Russia						
P. V. Minakova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics
														Email: van@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia; 101000, Moscow, Russia						
T. O. Kozlova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: van@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
A. E. Baranchikov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: van@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics
							Author for correspondence.
							Email: van@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia; 101000, Moscow, Russia						
References
- Nazaraly M., Wallez G., Chanéac C. et al. // Angew. Chem. Int. Ed. 2005. V. 44. P. 5691. https://doi.org/10.1002/anie.200501871
- Nazaraly M., Wallez G., Chanéac C. et al. // J. Phys. Chem. Solids. 2006. V. 67. P. 1075. https://doi.org/10.1016/j.jpcs.2006.01.028
- Козлова Т.О., Баранчиков А.Е., Иванов В.К. // Журн. неорган. химии. 2021. Т. 66. № 12. С. 1647. https://doi.org/10.31857/s0044457x21120102
- Bevara S., Achary S.N., Patwe S.J. et al. // AIP Conf. Proc. 2016. V. 1731. P. 1. https://doi.org/10.1063/1.4948206
- Nazaraly M., Quarton M., Wallez G. et al. // Solid State Sci. 2007. V. 9. P. 672. https://doi.org/10.1016/j.solidstatesciences.2007.04.021
- Achary S.N., Bevara S., Tyagi A.K. // Coord. Chem. Rev. 2017. V. 340. № March. P. 266. https://doi.org/10.1016/j.ccr.2017.03.006
- Romanchuk A.Y., Shekunova T.O., Larina A.I. et al. // Radiochemistry. 2019. V. 61. № 6. P. 719. https://doi.org/10.1134/S1066362219060134
- Sato T., Li R., Sato C. et al. // Phosphorus Res. Bull. 2007. V. 21. P. 44. https://doi.org/10.3363/prb.21.44
- Sato T., Yin S. // Phosphorus Res. Bull. 2010. V. 24. P. 43. https://doi.org/10.3363/prb.24.43
- Sato T., Sato C., Yin S. // Phosphorus Res. Bull. 2008. V. 22. P. 17. https://doi.org/10.3363/prb.22.17
- Kozlova T.O., Popov A.L., Kolesnik I.V. et al. // J. Mater. Chem. B. 2022. V. 10. № 11. P. 1775. https://doi.org/10.1039/d1tb02604f
- Nazaraly M., Chanéac C., Ribot F. et al. // J. Phys. Chem. Solids. 2007. V. 68. P. 795. https://doi.org/10.1016/j.jpcs.2007.03.010
- Shekunova T.O., Istomin S.Y., Mironov A.V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 27. P. 3242. https://doi.org/10.1002/ejic.201801182
- Kozlova T.O., Mironov A.V., Istomin S.Y. et al. // Chem. A Eur. J. 2020. V. 26. № 53. P. 12188. https://doi.org/10.1002/chem.202002527
- Lai Y., Chang Y., Wong T. et al. // Inorg. Chem. 2013. V. 52. № 23. P. 13639.
- Salvado M.A., Pertierra P., Trobajo C. et al. // J. Am. Chem. Soc. 2007. V. 129. № 36. P. 10970.
- Shekunova T.O., Baranchikov A.E., Ivanova O.S. et al. // J. Non-Cryst. Solids. 2016. V. 447. P. 183. https://doi.org/10.1016/j.jnoncrysol.2016.06.012
- Zhu Y.J., Chen F. // Chem. Rev. 2014. V. 114. № 12. P. 6462. https://doi.org/10.1021/cr400366s
- Meng L.Y., Wang B., Ma M.G. et al. // Mater. Today Chem. 2016. V. 1–2. P. 63. https://doi.org/10.1016/j.mtchem.2016.11.003
- Moreira M.L., Mambrini G.P., Volanti D.P. et al. // Chem. Mater. 2008. V. 20. № 16. P. 5381. https://doi.org/10.1021/cm801638d
- Salvadó M.A., Pertierra P., Bortun A.I. et al. // Inorg. Chem. 2008. V. 47. № 16. P. 7207. https://doi.org/10.1021/ic800818c
- Petit S., Righi D., Madejová J. // Appl. Clay Sci. 2006. V. 34. № 1–4. P. 22. https://doi.org/10.1016/j.clay.2006.02.007
- Petit S., Righi D., Madejová J. et al. // Clay Miner. 1999. V. 34. P. 543.
- Kloprogge J.T., Broekmans M., Duong L.V. et al. // J. Mater. Sci. 2006. V. 41. № 11. P. 3535. https://doi.org/10.1007/s10853-005-5909-5
- Xu Y., Feng S., Pang W. et al. // Chem. Commun. 1996. № 11. P. 1305. https://doi.org/10.1039/CC9960001305
- Brandel V., Clavier N., Dacheux N. // J. Solid State Chem. 2005. V. 178. № 4. P. 1054. https://doi.org/10.1016/j.jssc.2005.01.005
- Skogareva L.S., Shekunova T.O., Baranchikov A.E. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 10. P. 1219. https://doi.org/10.1134/S0036023616100181
- Hadrich A., Lautie A., Mhiri T. et al. // Vib. Spectrosc. 2001. V. 26. P. 51.
- Yang G., Park S.-J. // Materials (Basel). 2019. V. 12. № 7. P. 1177. https://doi.org/10.3390/ma12071177
- Maksimov V.D., Meskin P.E., Churagulov B.R. // Inorg. Mater. 2007. V. 43. № 9. P. 988. https://doi.org/10.1134/S0020168507090142
- Zhou H., Zhang M., Kong S. et al. // Mater. Lett. 2016. V. 180. P. 239. https://doi.org/10.1016/j.matlet.2016.05.165
- Qi C., Zhu Y.-J., Sun T.-W. et al. // Chem. An Asian J. 2015. V. 10. № 11. P. 2503. https://doi.org/10.1002/asia.201500667
- Sakintuna B., Yürüm Y. // J. Porous Mater. 2010. V. 17. № 6. P. 727. https://doi.org/10.1007/s10934-009-9344-x
- Yu Y.-H., Chen Y.-P., Zeng M. et al. // Mater. Lett. 2016. V. 163. P. 158. https://doi.org/10.1016/j.matlet.2015.10.039
- Kolesnik I.V., Aslandukov A.N., Arkhipin A.S. et al. // Crystals. 2019. V. 9. № 7. P. 332. https://doi.org/10.3390/cryst9070332
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



